
CS2040 Quiz 1

Problem 1 [10 Pts.]

Problem 1.a

𝑇 (𝑛) = 𝑛2

𝑛 − 1 + 2𝑛
5 ⋅ 𝑛2

2 + 𝑛2 log 𝑛 ≤ 2𝑛 + 𝑛3

5 + 𝑛2 log 𝑛 = 𝒪(𝑛3)

Problem 1.b

The inner two loops aren’t accessed for 𝑖 ≥ 50. Therefore, 𝑇 (𝑛) = 𝑇 (50)+𝑐(𝑛−
50) = 𝒪(𝑛).

Additional comments

Note that this doesn’t mean that nothing is being done when 𝑖 ≥ 50. Some of
the operations that are being done at every iteration of the outer loop include:
- Creating and assigning the varaible k. - Checking if k < 50. - Incrementing i.

Therefore, for 𝑛 ≥ 50, it performs a fixed number of operations for 0 ≤ 𝑖 < 50
(“Boss” gets printed out exactly 127500 times), then performs a constant amount
of work at every iteration for 𝑖 ≥ 50.

Problem 1.c

This problem has the same proof with Paranoid-Quicksort but using 2
5 and 3

5
instead of 1

10 and 9
10 .

Problem 1.d

The doWork(n) method returns 𝑛, and runs in 𝒪(𝑛) time. Hence, each call
to recursiveLoops(n) performs 𝑐𝑛 work and makes a single recursive call to
recursiveLoops(n/2).

1



𝑇 (𝑛) = 𝑐𝑛 + 𝑇 (𝑛
2 )

= 𝑐𝑛 + 𝑐 ⋅ 𝑛
2 + 𝑇 (𝑛

4 )

= 𝑐𝑛 + 𝑐 ⋅ 𝑛
2 + 𝑐 ⋅ 𝑛

4 + 𝑇 (𝑛
8 )

≤ 𝑐𝑛 + 𝑐 ⋅ 𝑛
2 + 𝑐 ⋅ 𝑛

4 + 𝑐 ⋅ 𝑛
8 + ⋯

= 𝑐 (1 + 1
2 + 1

4 + 1
8 + ⋯)

= 𝑐 ⋅ 1
1 − 1

2
= 2𝑐
= 𝒪(𝑛)

Additional comments

For a more detailed proof, refer to the appendix.

Problem 2 [10 Pts.]

Sorting Algorithm Number of Swaps
Insertion Sort 𝒪(𝑛2)
Selection Sort 𝒪(𝑛)
Quick Sort 𝒪(𝑛 log 𝑛) or 𝒪(𝑛2)
Heap Sort 𝒪(𝑛 log 𝑛)

Looking at the number of swaps in the table above, the best algorithm is Selec-
tion Sort.

Explanation

This problem asks for the sort that uses the least number of swaps/movements.
For simplicity, let’s assume the cats are stored in an array we’re sorting the cats
in ascending order of size.

Insertion Sort

At each iteration, Insertion Sort will move the next unchecked element to its
position in the growing sorted array. The swapping occurs within this moving
process, where how many swaps depends on where the element ends up in the

2



growing sorted array. The further up in front an element ends up, the more
swaps occur.

A case that maximizes the number of swaps is a descending array. For example,
consider the array [5, 4, 3, 2, 1]. - Iteration 1: [5, 4, 3, 2, 1] (0 swaps)
- Iteration 2: [4, 5, 3, 2, 1] (1 swap) - Iteration 3: [3, 4, 5, 2, 1] (2
swaps) - Iteration 4: [2, 3, 4, 5, 1] (3 swaps) - Iteration 5: [1, 2, 3, 4,
5] (4 swaps)

Therefore, for an array of 𝑛 elements, the worst case for the number of swaps is
bounded by 𝒪(𝑛2).

Selection Sort

At each iteration, Selection Sort checks all the unsorted elements to find the
minimum element, then swaps the minimum element to its correct sorted posi-
tion. Notice that regardless of the initial ordering of the array, Selection Sort
will perform at most 1 swap per iteration.

Therefore, for an array of 𝑛 elements, the worst case for the numer of swaps is
bounded by 𝒪(𝑛).

Quick Sort

The swaps for Quick Sort occur during the partitioning process. Addition-
ally, the number of swaps depends on the choice of the partitioning algorithm
(Hoare’s or Lomuto’s Partition).

Hoare’s Partition

For Hoare’s Partition, we have two pointers, 𝑙 and 𝑟, pointing to the start
and end of the array to be partitioned. As 𝑙 and 𝑟 approach each other,
a swap occurs when 𝐴[𝑙] > 𝑝 and 𝐴[𝑟] < 𝑝, where 𝑝 is the pivot. (E.g.
[4, 1, 0⏟

< pivot
, 6, 5, 3, 2, 8, 7⏟

> pivot
] → [4, 1, 0, 2⏟

< pivot
, 5, 3, 6, 8, 7⏟

> pivot

])

To maximize the number of swaps for an array of 𝑘 elements (including the
pivot), the array can be in the following form:

[𝑝, 𝑔1, 𝑔2, … , 𝑔 𝑘−1
2

, 𝑠1, 𝑠2, … , 𝑠 𝑘−1
2

]

Where 𝑝 is the pivot, 𝑔𝑖 > 𝑝 and 𝑠𝑖 < 𝑝 for all 𝑖 ∈ [1, 𝑘−1
2 ]. This will result in

a total of 𝑘−1
2 swaps during the partition, then 1 more swap when placing the

pivot in the correct position. Once that’s done, the array is partitioned into two
halves, where QuickSort will recurse on both of them.

3



Hence, if 𝑆(𝑛) represents the maximum number of swaps required by Quick Sort
that uses Hoare’s Partition for an array of size 𝑛,

𝑆(𝑛) ≈ 𝑛
2 + 2𝑆 (𝑛

2 )

Solving the recurrence relation, 𝑆(𝑛) = 𝒪(𝑛 log 𝑛).
An example of an array that exhibits this behaviour is [3, 4, 6, 5, 1, 0,
2], where the first element is always chosen as the pivot.

Lomuto’s Partition

For Lomuto’s Partition, a swap occurs when a value smaller than the pivot
is found while already having encountered a value larger than the pivot (E.g.
[4, 1, 2, 3⏟

< pivot
, 5, 6⏟

> pivot
, 0, 7] → [4, 1, 2, 3, 0⏟

< pivot

, 6, 5⏟
> pivot

, 7]).

To maximize the number of swaps for an array of 𝑘 elements (inlcuding the
pivot), the array can be in the following form:

[𝑝, 𝑔, 𝑠1, 𝑠2, … , 𝑠𝑘−2]

Where 𝑝 is the pivot, 𝑔 > 𝑝 and 𝑠𝑖 < 𝑝 for all 𝑖 ∈ [1, 𝑘 − 2]. This will result in a
total of (𝑘 − 2) swaps during the partition, then 1 more swap when placing the
pivot in the correct position. Once that’s done, the array is partitioned into one
block of size 1, and another block of size (𝑘 − 2). You might notice that this is
similar to the worst case of Quick Sort, and that’s exactly what we’re aiming
for.

Hence, if 𝑆(𝑛) represents the maximum number of swaps required by Quick Sort
that uses Lomuto’s Partition for an array of size 𝑛,

𝑆(𝑛) = (𝑛 − 1) + 𝑆(𝑛 − 2)

Solving the recurrence relation, 𝑆(𝑛) = 𝒪(𝑛2).
An example of an array that exhibits this behaviour is [7, 8, 6, 4, 1, 2,
3, 5], where the first element is always chosen as the pivot.

Heap Sort

Performing Heap Sort on an array of 𝑛 elements consists of two steps: - Con-
struct the Heap - Remove the maximum element 𝑛 times.

We’ll need to find the number of swaps performed during each step.

4



Constructing the Heap

We know that Heap Construction has a time complexity of 𝒪(𝑛) for an array of
size 𝑛. Therefore, intuitively, the number of swaps is upper bounded by 𝒪(𝑛)
(because if it were any larger, Heap Construction would be slower than 𝒪(𝑛)
time).

We will not be discussing why there will be 𝒪(𝑛) swaps during Heap Construc-
tion in any more detail (because it will not matter).

Extract Max

Removing the maximum element of a Heap of size 𝑛 consists of two steps: -
Replace the root with the last element in the Heap.

1 swap (at most) will be performed.

• Perform the 𝑆𝑖𝑛𝑘 operation on the new root.

1 swap is performed each time a node goes down one level. In the worst
case, the maximum number of swaps performed is equal to the height of
the Heap, which we know is 𝒪(log 𝑛).

Therefore, in a Heap of size 𝑛, the “Extract Max” operation will perform at
most 𝒪(log 𝑛) swaps.

Since we perform the “Extract Max” operation 𝑛 times, the total number of
swaps performed during Heap Sort is at most 𝒪(𝑛 log 𝑛).
An example of an array that maximizes the number of swaps is [1, 4, 6, 2,
5, 3, 7].

Problem 3 [15 Pts.]

𝒪(𝑛 log 𝑛) [10 Pts.]

Declare an array 𝑇 of size 𝑛 and copy the contents from all 𝑘 the linked lists
into 𝑇 . Sort 𝑇 using Merge Sort. Copy the contents of 𝑇 into another Linked
List and return it.

Step Time complexity
Copy the contents from all linked lists into 𝑇 𝒪(𝑛)
Sort 𝑇 using Merge Sort 𝒪(𝑛 log 𝑛)
Copy the contents of 𝑇 into another Linked List 𝒪(𝑛)

Overall time complexity: 𝒪(𝑛 log 𝑛)

5



Additional Comments

This method is the simplest, and most intuitive solution. As such, any solution
that is slower than, or as slow as this solution will receive a maximum of 5 out
of 10 points for your Algorithm.

𝒪(𝑛𝑘) [10 Pts.]

Declare a new Linked List 𝑅 to store the output.

Compare the first element of each of the 𝑘 linked lists. Find the linked list
where the first element is the smallest, remove the first element from that list
and insert it into 𝑅.

Repeat this process until all 𝑛 elements have been inserted into 𝑅. Finally,
return 𝑅.

Step
Time

complexity
1. Find the list where the first element is the smallest. 𝒪(𝑘)
2. Remove the first element from that list and append it
to 𝑅.

𝒪(1)

3. Repeat steps 1 and 2 𝑛 times. 𝒪(𝑛𝑘)

Overall time complexity: 𝒪(𝑛 log 𝑛)

Additional Comments

A significant number of students implemented this algorithm, but incorrectly
determined the time complexity to be 𝒪(𝑛), possibly because they incorrectly
stated that finding the minimum element among 𝑘 Linked Lists took 𝒪(1) time,
or they correctly reached 𝒪(𝑛𝑘) but concluded that it is equivalent to 𝒪(𝑛) since
𝑘 is a constant.

Unless specified, do not assume that the variables that appear in a question
are constants.

𝒪(𝑛 log 𝑘) [15 Pts.]

Label the Linked Lists as 𝐿1, 𝐿2, … , 𝐿𝑘. Declare a new Linked List 𝑅 to store
the output.

Declare a Minimum Heap that contains integer pairs. This Heap will compare
only the first element of integer pairs (i.e. the minimum integer pair (𝑢, 𝑣) is the
pair with the smallest value of 𝑢).

6



For each Linked List 𝐿𝑖, insert an integer pair, (First element of 𝐿𝑖, 𝑖), into the
Min Heap.

Extract the minimum integer pair, (𝑎, 𝑖), from the Min Heap. Insert 𝑎 into 𝑅,
and remove the first element from 𝐿𝑖. If 𝐿𝑖 is not empty, insert (First element
of 𝐿𝑖, 𝑖) into the Min Heap.

Repeat the above process until all 𝑛 elements have been inserted into 𝑅. Finally,
return 𝑅.

Step Time complexity
1. Initialize the Min Heap. 𝒪(𝑘 log 𝑘)
2. Extract the minimum pair (𝑎, 𝑖) from the Min
Heap.

𝒪(log 𝑘)

3. Insert 𝑎 into 𝑅 and remove the first element of 𝐿𝑖. 𝒪(1)
4. Insert (First element of 𝐿𝑖, 𝑖) into the Min Heap. 𝒪(log 𝑘)
5. Repeat steps 2 to 4 𝑛 times. 𝒪(𝑛 log 𝑘)

Overall time complexity: 𝒪(𝑛 log 𝑘)

Additional Comments

The initialization of the Min Heap can be done in 𝒪(𝑘) instead of 𝒪(𝑘 log 𝑘),
but it will not affect the overall time complexity.

This solution has the same idea as the 10 point 𝒪(𝑛𝑘) solution, but uses a Min
Heap to speed up the process of “finding the list with the smallest first element”
from 𝒪(𝑘) to 𝒪(log 𝑘).
This model solution included a fair amount of fine details. While we cannot
guarantee which parts may be omitted without being at risk of losing marks,
do remember that the less vague your solution is, the less likely you will be
deducted.

Alternative 𝒪(𝑛 log 𝑘) solution

Label the lists 𝐿1, 𝐿2, … , 𝐿𝑘.

Perform the Merge algorithm pairwise on the lists i.e. merge 𝐿1 and 𝐿2 into
𝐿1,2, merge 𝐿3 and 𝐿4 into 𝐿3,4, and so on. After that, repeat this process
i.e. merge 𝐿1,2 and 𝐿3,4 into 𝐿1,2,3,4, merge 𝐿5,6 and 𝐿7,8 into 𝐿5,6,7,8, and so
on.

Continue to repeat this process until only one list remains. Return that list.

Every time we merge the lists pairwise, the total number of lists will be cut in
half. Therefore, the process will be repeated log2 𝑘 times.

7



Step Time complexity
1. Merge the lists pairwise using the Merge algorithm. 𝒪(𝑛)
2. Repeat step 1 log2 𝑘 times. 𝒪(𝑛 log 𝑘)

Overall time complexity: 𝒪(𝑛 log 𝑘)

Additional Comments

It is also possible to do this in a Top-down recursive aproach using Divide and
Conquer.

8


	CS2040 Quiz 1
	Problem 1 [10 Pts.]
	Problem 1.a
	Problem 1.b
	Problem 1.c
	Problem 1.d

	Problem 2 [10 Pts.]
	Problem 3 [15 Pts.]
	\mathcal{O}(n \log n) [10 Pts.]
	\mathcal{O}(nk) [10 Pts.]
	\mathcal{O}(n \log k) [15 Pts.]
	Alternative \mathcal{O}(n \log k) solution



