
National University of Singapore

School of Computing

CS2040S - Data Structures and Algorithms

Midterm Test

(Semester 1 AY2024/25)

Time Allowed: 70 minutes

INSTRUCTIONS TO CANDIDATES:

1. Do NOT open this assessment paper until you are told to do so.

2. This assessment paper contains ONE (1) section with a few short questions.

It comprises TEN (10) printed pages, including this page.

3. This is an Open Book Assessment.

Only non-programmable calculator is allowed in this assessment.

4. Answer ALL questions within the boxed space of the answer sheet (page 07-10).

There are a few starred (*) boxes: free 1 mark if left blank but 0 for wrong answer (no partial).

The answer sheet is at page 07-10, just hand in those pages.

You can use either pen or pencil. Just make sure that you write legibly!

5. Important tips: Pace yourself! Do not spend too much time on one (hard) question.

Read all the questions first! Some (subtask) questions might be easier than they appear.

6. You can use pseudo-code in your answer but beware of penalty marks for ambiguous answer.

You can use standard, non-modified classic algorithm in your answer by just mentioning its

name, e.g., run Merge Sort on ArrayList 𝐴, etc.

7. The total marks is 70. All the best :)

1

CS2040S

A Short Questions (70 marks)

A.1 Java Code Comprehension and Analysis (15 marks)

You are given the following Java code that correctly solves one programming contest problem in Kattis:

import java . u t i l . ∗ ;

public class A1 {
public stat ic void main (St r ing [] a rgs) throws Exception {

Scanner sc = new Scanner (System . in) ;

// input

int n = sc . next Int () , m = sc . next Int () ; sc . nextLine () ;

ArrayList<Integer> A = new ArrayList <>();

for (int i = 0 ; i < n ; ++i)

A. add (sc . next Int ()) ;

// the computation

int ans = 0 ;

for (int i = 0 ; i <= n−m; ++i) {
int something = 0 ;

for (int j = 0 ; j < m; ++j)

i f (A. get (i+j)%2 == 0)

++something ;

i f (something >= 2)

++ans ;

}

// output

System . out . p r i n t l n (ans) ; // what i s a c t u a l l y computed?

}
}

1. (2 marks) If we enter 8 3 as the first line of input and then

1 2 3 4 5 6 7 8 as the second line of input,

what will this Java code produce?

2. (2 marks) If we enter 9 4 as the first line of input and then

1 2 3 5 7 8 9 11 5 as the second line of input,

what will this Java code produce?

3. (5 marks) Describe, in high-level, what is being computed in the “the computation” section?

Any logical explanation will be accepted.

2

CS2040S

4. (3 marks) What is the tightest Big O time complexity of this solution, in terms of 𝑛 and 𝑚?

PS: You are given additional information that 1 ≤ 𝑚 < 𝑛.

5. (3* marks) Can you Please rewrite the Java code so that it solves the same problem, but in a

faster (i.e., tighter) Big O time complexity (the time complexity should not involve variable 𝑚).

A.2 Big-O Time Complexity Analysis (10 marks)

There is an unknown algorithm that process a Java ArrayList 𝐴 (containing 𝑁 integers). This algo-

rithm has been correctly analyzed to have time complexity of 𝑂(𝑁 log𝑁). There is no randomized

component in this unknown algorithm.

For the five statements below, which statement(s) is/are always True for all cases|can be False

on at least one case given the information above (1 mark per correct decision)? Give a short one

sentence explanation for your decision (1 mark for each logical explanation).

1. If 𝑁 = 217 = 131 072, then the total number of operations is exactly 2 228 224 operations.

2. This algorithm can be improved to 𝑂(𝑁).

3. We can also say that this algorithm runs in 𝑂(𝑁2).

4. If we change ArrayList 𝐴 into PriorityQueue 𝑃𝑄, the algorithm will run in 𝑂(𝑁).

5. Asymptotically, as 𝑁 becomes very large, there is no test-case can make this algorithm executes

𝑁2 operations or more.

A.3 Another Merge Sort Variant (5 marks)

In class, you learn about the following standard Merge Sort algorithm:

method mergeSort (array A, i n t e g e r low , i n t e g e r high)

// the array to be so r t ed i s A[low . . high]

i f (low < high) // base case : low >= high (0 or 1 item)

i n t mid = (low+high) / 2

mergeSort (a , low , mid) // d i v i d e in t o two ha l v e s

mergeSort (a , mid+1, high) // then r e c u r s i v e l y s o r t them

merge (a , low , mid , high) // conquer : the O(n) merge subrou t ine

Suppose, you modify it into the following

method mergeSort (array A, i n t e g e r low , i n t e g e r high)

// the array to be so r t ed i s A[low . . high]

i f (low < high) // base case : low >= high (0 or 1 item)

i n t mid = (low+high) / 2

mergeSort (a , low , mid) // d i v i d e in t o two ha l v e s

mergeSort (a , mid+1, high) // then r e c u r s i v e l y s o r t them

c a l l an O(n log n) s o r t to s o r t A[low . . high] // <−− the change

// can be anything , perhaps c a l l Arrays . s o r t (A, low , h igh)

// t ha t on ly s o r t t h i s subarray A[low . . high]

3

CS2040S

1. (3 marks) Just choose one of the following (2 marks):

This modification of Merge Sort is [faster|no different|slower]
than the original version of Merge Sort discussed in class.

Give a short one sentence explanation for your decision (1 mark)

2. (2* mark) What is the time complexity of this modification of Merge Sort?

A.4 Analyze These Statements (20 marks)

For each of the five statements below, choose whether it is correct|incorrect (1 mark). If you say

it is correct, write a short one sentence explanation for your decision. If you say it is incorrect, just

show one counterexample (the other 1 mark).

1. This Java code runs in worst-case time complexity of 𝑂(𝑛2) and this analysis is tight.

int counter = 0;

for (int i = n; i >= 1; --i)

for (int j = 1; j <= n/i; ++j)

++counter;

2. (Randomized) Quick sort is the best sorting algorithm to sort any set of 𝑛 Integers.

3. Java Collections.sort can run slower than 𝑂(𝑛 log 𝑛) (and more than 𝑂(𝑛2)) if we use it to

sort a collection of 𝑛 Java Strings (assume each String has 𝑚 Characters).

4. We can compute the number of inversions (a.k.a. number of Bubble Sort swaps) of an ArrayList

𝐴 with 𝑛 integers faster than 𝑂(𝑛2).

5. Singly Linked List discussed in Lecture 4a+4b is a better data structure to implement the Stack

ADT push(key) and last key = pop() than using Java ArrayList, i.e., a resizeable array.

6. Doubly Linked List discussed in Lecture 4a+4b is a better data structure to implement the Deque

ADT offerFirst(key), offerLast(key), key1 = pollFirst(), and key2 = pollLast() than

using Java ArrayList, i.e., a resizeable array. Important: For this question, the maximum number

of elements in the Deque is already known beforehand.

7. A Stack/Queue is a Last-In-First-Out/First-In-First-Out data structure, respectively. Thus,

there is no way we can insert a sequence of 𝑛 (𝑛 > 1) Integers into a Stack and (the same

sequence of 𝑛 Integers into) a Queue and when we peek the top/front of the Stack/Queue,

respectively, we see the same Integer (value).

8. Suppose that you have two Linked Lists La and Lb. La/Lb contains 𝑛/𝑚 unsorted alphabets

[‘A’..‘Z’], respectively (100 < 𝑛,𝑚 < 10 000;𝑛 ̸= 𝑚). As we cannot get an element at index 𝑖 in

𝑂(1) if we use Linked List, to check whether an alphabet is inside both La and Lb, we need an

𝑂(𝑛×𝑚) algorithm that is roughly like this:

4

CS2040S

for (Character a: La)

..for (Character b: Lb)

....if (a.equals(b)) return true;

return false;

9. The smallest element in a Binary Max Heap is always located at the bottommost, rightmost

leaf, i.e., at index 𝑛 of a compact array 𝐴 that describes the Binary Max Heap.

10. Suppose that we need to use a special kind of ADT Priority Queue where all enqueue (Insert(v))

operations will be performed first before all subsequent dequeue (ExtractMax()) operations (from

highest priority to lowest priority). For this kind of ADT PQ, we can use another data structure

and/or algorithm to achieve similar time complexities as if we use Binary (Max) Heap.

A.5 An Algorithm that uses Priority Queue (15 marks)

You are not yet told what this algorithm does, but it is from a real algorithm that you will eventually

learn in a future algorithm course (if there is no change in curriculum).

import java . u t i l . ∗ ;

public class A5 {
public stat ic void main (St r ing [] a rgs) {

int n = 5 ;

int [] charFreq = { 5 , 1 , 6 , 10 , 3 } ;

ArrayList<Integer> ds = new ArrayList <>();

for (int i = 0 ; i < n ; ++i)

ds . add (charFreq [i]) ;

while (ds . s i z e () > 1) {
Co l l e c t i o n s . s o r t (ds) ;

I n t eg e r x = ds . get (0) ;

ds . remove (0) ;

I n t eg e r y = ds . get (0) ;

ds . remove (0) ;

ds . add (x+y) ;

System . out . p r i n t l n (x . t oS t r i ng () + ”+” + y . t oS t r i ng () + ”=” + (x+y)) ;

}
}

}

1. (4 marks) Output 4 lines that will be the output of that code, if executed.

2. (3 marks) If we change 𝑛 = 7 and 𝑐ℎ𝑎𝑟𝐹𝑟𝑒𝑞 = {1, 2, 3, 4, 5, 6, 7}
What will be the last line of the output?

5

CS2040S

3. (3 marks) What is the time complexity of that code in terms of 𝑛?

You need to assume that 𝑛 can be a very big number, not just 𝑛 = 5 in this example.

4. (5* marks) Can you Please rewrite the Java code so that it solves the same problem, but in a

faster (i.e., tighter) Big O time complexity. Hint: Do not call Collections.sort repeatedly.

There is a better data structure for this problem.

A.6 The Last Question (5 marks)

To qualify for up to easy 5 marks, you need to write both full names correctly.

My CS2040S lecturer is and Teaching Assistant (TA) is ,

Write a short (maybe limit yourself to around 2 minutes to do this and about 3-4 sentences) but

honest (and not anonymous) feedback on what you have experienced in the first 6 weeks of

CS2040S in Semester 1 AY 2024/25 (including Week -02/-01 experience, if any). Feedback that are

shared by majority (not a one-off) and can be easily incorporated (e.g., Prof Halim, do not travel

again on Week 09 like Week 04 and 06 is very hard to change) to make the next 7 weeks of CS2040S

better will be done. Grading scheme: 0-blank, 3-considered trivial feedback but not blank, 5-good

and constructive feedback, thanks. (Penalty -1 mark for each wrong name above...).

6

CS2040S

The Answer Sheet
Write your Student Number in the box below using (2B) pencil.

Do NOT write your name.

Box A.1.1 Check Your Understanding 1 (write one integer)

Box A.1.2 Check Your Understanding 2 (write one integer)

Box A.1.3 Explain that Java code in high-level

7

CS2040S

Box A.1.4 What is the time complexity in terms of 𝑛 and 𝑚?

Box A.1.5* (1 if blank, 0 if wrong) Design a faster algorithm, regardless of 𝑚

Box A.2 always True|can be False; and why? (5 statements)

Box A.3.1. faster|no different|slower; and why?

8

CS2040S

Box A.3.2* (1 if blank, 0 if wrong) What is the time complexity?

Box A.4 1st-5th boxes, correct|incorrect; and why? (first 5 statements)

Box A.4. 6th-10th boxes, correct|incorrect; and why? (next 5 statements)

9

CS2040S

Box A.5.1 The output of the given code

Box A.5.2 The output of the next test case

Box A.5.3 The time complexity in terms of 𝑛

Box A.5.4* (1 if blank, 0 if wrong) Design a faster algorithm that does not sort each time

Box A.6 The Last Question: Lecturer and TA name, plus honest feedback

– END OF PAPER; All the Best –

10

	Short Questions (70 marks)
	Java Code Comprehension and Analysis (15 marks)
	Big-O Time Complexity Analysis (10 marks)
	Another Merge Sort Variant (5 marks)
	Analyze These Statements (20 marks)
	An Algorithm that uses Priority Queue (15 marks)
	The Last Question (5 marks)

