
CS2040S 2021/2022 Semester 1 Midterm

MCQ

This section has 10 questions and is worth 30 marks. 3 marks per question.

Do all questions in this section.

1. Searching for an element in a doubly linked list (as given in lecture notes) of size N will require worst
case time complexity

a) O(1)
b) O(log n)
c) O(n)
d) O(n log n)

2. Haftek has a box of apples, each having a distinct weight. Haftek wants to sort the apples, but he does
not have a digital weighing scale toget the exact weights. Thus, he can only use his hands to compare
two apples at a time to know which of the two apples is heavier. Which of the following algorithms can
be used by Haftek?

a) Insertion sort
b) Merge sort
c) Quick sort
d) All of the above

3. Consider a hash table using separate chaining for collision resolution, with table size of 10 (keys 0 to 9)
and the hash function h(x) = (3x + 1) % 7. After inserting the keys 4, 11, 18, 25, 32, 39 into the hash table,
the length of the linked list for key 6 is

a) 4
b) 5
c) 6
d) Insufficient information to determine

4. Consider a hash table using linear probing for collision resolution, with table size of 11 (keys 0 to 10)
and the hash function h(x) = x % 11. The total number of probes for inserting the keys 3, 7, 13, 15, 2, 29
is

a) 9
b) 10
c) 11
d) 12

5. Oizne Mak wants to design a queue which has a maximum capacity of N. This queue supports the
operations dequeue and peek which should work like the standard queue ADT. The enqueue operation is
slightly different: when there are less than N elements in the queue it is the same as the standard queue
ADT's enqueue, but should do nothing when the queue has N elements. Oizne Mak wants all operations
to be done in O(1) time in the worst case.

Which of the following data structures can Oizne Mak use? The options are independent, eg. picking (i)
and (iii) means that it can be done with either a linked list alone, or a tailed linked list alone.

i. Linked list
ii. Doubly linked list (without tail reference)

iii. Tailed linked list
iv. Array

a) (i) only
b) (ii) and (iii)
c) (iii) and (iv)
d) (ii), (iii) and (iv)

6. An array is k-sorted if each element is at most k positions away from its sorted position. Which of the
following sorting algorithms (as given in the lecture notes) can sort a k-sorted array of size N in O(kN)
time?

i. Insertion sort
ii. Optimised bubble sort

iii. Selection sort

a) (i) and (ii)
b) (i) and (iii)
c) (i), (ii), and (iii)
d) None of the algorithms will run in O(kN) time.

7. Which of the following statements is false?

a) We can reverse a queue in O(N) time with an additional stack only.
b) We can reverse a queue in O(N) time with an additional queue only.
c) We can reverse a queue in O(N2) time with an additional queue only.
d) We can reverse a queue in average O(N) time with an additional hash table only.

8. A bloom filter of size 11 is created with the following 4 hash functions:

h1(x) = (2x - 1) % 11

h2(x) = (2x + 1) % 11

h3(x) = (3x - 1) % 11

h4(x) = (3x + 1) % 11

0 1 2 3 4 5 6 7 8 9 10
0 0 0 1 0 1 0 1 1 0 1

The diagram above shows the state of the bloom filter after the keys 2 and 25 are inserted (top row is
the index of the bloom filter). Which of the following keys will return a negative result (i.e. return false)?

a) 10
b) 17
c) 29
d) 33

9. Given the following function/method foo

function foo(L, i, j) {

 // If the left-most element i is larger than the right-
 // most element j

 if L[i] > L[j] {
 swap(L, i, j)
 }

 // If there are at least 3 elements in the array

 if (j - i + 1) > 2 {
 t = floor((j - i + 1) / 3)
 foo(L, i , j-t) // Recurse on the first 2/3 of L
 foo(L, i+t, j) // Recurse on the last 2/3 of L
 foo(L, i , j-t) // Recurse on the first 2/3 of L

 }
 return L
}

Assume L is a 0-indexed array of size N.

Let the starting values of i and j be 0 and N-1 respectively.

What is the worst case time complexity of the algorithm foo?

a) O(N(log
3/2

 3))
b) O(N(log

3
 3))

c) O(N(log
2

 3))
d) None of the above

10. Given the same function/method foo as in Q9

Assume L is a 0-indexed array of size N.

Let the starting values of i and j be 0 and N-1 respectively.

Which of the following statement is true?

a) The algorithm foo correctly sorts the first 1/3 of the array.
b) The algorithm foo correctly sorts the first 2/3 of the array.
c) The algorithm foo correctly sorts the entire array.
d) The algorithm foo does not sort any part of the array.

Analysis

This section has 3 questions and is worth 12 marks. 4 marks per question.

Please select True or False and then type in your reasons for your answer.

Correct answer (true/false) is worth 2 marks.

Correct explanation is worth 2 marks. Partially correct explanation worth 1 marks.

Do all questions in this section.

11. Given the best case input of size N for each of the following sorting algorithms:

 a) Selection Sort
 b) Optimized Bubble Sort
 c) Insertion Sort
 d) Merge Sort
 e) Quick Sort

The sorting algorithm that does the least amount of comparison in terms of big-O to perform the
sorting is only b) Optimized Bubble Sort.

12. John has constructed his own hash table of size M that uses separate chaining as a collision
resolution technique and the division method (% method) as the hash function.

However he has modified the separate chaining technique so that instead of using a linked list, each
entry in the hash table uses another hash table. Each sub-hash table is of size M', and uses linear
probing as collision resolution.

John is quite confident that for any prime number M and and any M' that is co-prime to M and M' <
M, if he does not need to resize the main table or any of the subtables, the time complexity to
insert a pair of integer (assuming bounded number of digits per integer) key value pairs into the
hash table is worst case O(1).

13. Given the following algorithm DoSomething

DoSomething(int n, int i, int s) {
 if (n/i <= 1)
 return
 else {
 if (s == 1) {
 for (int j=0; j < n/i; j++) {
 System.out.println("DoSomething1");
 }
 DoSomething(n, i+1, 2);
 }
 else
 for (int j=1; j < n/i; j*2) {
 System.out.println("DoSomething2");
 }
 DoSomething(n,i+1, 1);
 }
}

Calling DoSomething(N,1,1) for some N will run in worst case time complexity O(N2).

Application Questions

This section has 4 questions (last 2 questions has 2 parts) and is worth 58 marks.

Write in pseudo-code.

Any algorithm/data structure/data structure operation not taught in CS2040S must be
described, there must be no black boxes.

Partial marks will be awarded for correct answers not meeting the time complexity required.

14. [11 marks] Given an arraylist A containing N (N ≥ 1) unsorted arraylists each containing up to M (M
≥ 1) possibly repeated integer values, give an algorithm which takes in A and print out all integers
that are common to all the N arraylists in ascending order. The integers can take values from 1 to
10,000,000, and each list may contain repeated integer values.

You must ensure the time complexity of your algorithm is O(M*N) in the worst case.

For example, if A contains 3 unsorted lists with the following content

10, 13, 30, 100, 2, 5, 11, 2
2, 11, 13, 5, 13
13, 3, 2, 1, 7, 3, 4, 10, 11, 100, 30

the output from your algorithm should be

2,11,13

15. [11 marks] You are given 2 input strings A and B, each of length N. You are supposed to check if A
and B are anagrams of each other.

2 strings are anagrams of each other if they consist of the same characters but not neccessarily in
the same order. For example, "eat" and "tea" are anagrams of each other, but "idea" and "adeer"
are not.

This problem can be solved using a hash table... However, the setter of the question is evil and has
restricted you to use up to 2 stacks that can only contain characters and no other ADT/data
structure to solve the problem. You cannot modify the input strings A and B in any way.

You must solve the problem (output true if A and B are anagrams and false otherwise) in at
most O(N2) worst case time.

Both Question 16 & 17 are related to the problem description below

A group of M persons are found to be related to each other through the patriarchal line of their
family (tracing back on the male ancestors). It is for certain that all their furthest traceable ancestor
is the same person but there can be branchings down the line from that ancestor.

Now each of them has created a singly linked list of their patriarchal line with them at the head and
their furthest traceable ancestor at the tail. Only the names are stored in each node. Each linked list
is of size N1 to Nm and the largest among them is Nmax.

Trying to figure out how they are related is now quite difficult since there are M linked list. One of
them in the group then suggested that they merge the linked list to form a family tree, where there
should be only 1 node in the family tree for any common ancestor shared among them. Then it
would be easier to check how they are related.

For simplicity sake all the names of the people involved in the family tree are unique and no more
than 20 characters long, thus if some node in 2 different linked list share the same name that would
be a common ancestor between the patriarchal lines.

For example, given M=3 and the following singly linked lists for each person:

A way to merge them into a family tree would be as follows:

Now your problem is given an array A of M references to the head node of the M linked list, give an
algorithm to merge the linked lists into a family tree in O(M*Nmax) average case time or better. You can
create and delete nodes as neccessary to form the family tree at the end.

16. [10 marks] For Q16, solve the problem for M = 2

(you can solve for Q17 and use that answer here if you are confident it is correct. The suggestion is
to do Q16 first then Q17)

17. [8 marks] For Q17, solve the problem for any value of M ≥ 2

Both Question 18 & 19 are related to the problem description below

In the "programming" game of “wolves and sheep”, you are given an array B of size N (N > 10)
containing items that represent “wolves” and “sheep”.

An item will have 2 attributes

• type –> type = 1 is a sheep while type = -1 is a wolf
• id –> a unique positive integer value bigger than 0, identifying the animal

Now B is split up into k (2 <= k < N) contiguous subarrays B’1 to B’k and each subarray B’i can only contain
either sheep or wolves but not both. The leftmost subarray will always start as a sheep array (can only
contain sheep) and then the subarrays will alternate between sheep and wolves from left to right.

Each of the k subarray is identified by a pair <L,R> where L is the index of the leftmost boundary and R is
the index of the rightmost boundary of the subarray. These pair information are stored in an array SA
from leftmost to right most subarray.

You are guaranteed that the number of sheep in the B is equal to the sum of the size of all the sheep
subarrays, and similarly for the wolves.

Now at the start of the game, the wolves and sheep are all jumbled up in B and so they may be in the
wrong subarray.

An example of a jumbled up B of size N = 13 with k = 4 and SA = {<0,2>,<3,7>,<8,9>,<10,12>} is shown
below,

43

-1

3

1

50

-1

27

1

51

-1

85

1

1

1

33

-1

31

-1

90

-1

151

-1

113

-1

70

1

For each entry, top value is the id and bottom underlined value is the type.

Subarrays are color coded to show the animal it should contain (yellow is sheep, red is wolf).

You can easily see that there are sheep and wolves that are in the wrong subarray.

Now you will be given B, N, k and SA, and the point of the game is to write an algorithm to move the
animals so that each subarray contains the correct type of animal. Your algorithm must run in worst case
O(N) time.

A valid B at the end of your algorithm (among possibly many others) for the example given is as shown,

27

1

3

1

1

1

43

-1

51

-1

31

-1

50

-1

33

-1

85

1

70

1

151

-1

113

-1

90

-1

18. [10 marks] For Q18, solve the problem where you can use up to O(N) additional space for your
algorithm.

(you can solve for Q19 and use that answer here if you are confident it is correct. The suggestion is
to do Q18 first then Q19)

19. [8 marks] For Q19, solve the problem where you can only use additional O(1) space for your
algorithm.

	MCQ
	Analysis
	Application Questions

