
CS2040 2023/2024 Sem 2 Midterm
(75 marks total)

MCQ: 30 Marks, 10 Questions (3 Marks each)

1. What is the runtime complexity of classic quicksort (as taught in lecture) when all
elements in the array have the same value?

a. O(log N)
b. O(N)
c. O(N log N)
d. O(N2)

Ans: d

The quicksort discussed in lecture always uses the first index as the pivot. The resulting
partition will be imbalanced, with 0 elements less than the pivot and n-1 elements greater
than or equals to the pivot.

2. An array A is being sorted using the quicksort algorithm discussed in the lecture.
After running for some time, the program was terminated and A becomes [2, 1, 3, 5,
4, 6, 7]. Which of the following array is NOT a valid initial ordering of A?

a. [2, 4, 3, 5, 1, 6, 7]
b. [7, 4, 3, 5, 1, 6, 2]
c. [6, 5, 1, 2, 7, 3, 4]
d. [6, 3, 1, 7, 5, 4, 2]
e. None of the above

Ans: c
This question tests if the student understands the partitioning algorithm covered in lecture
(This is also known as Lomuto’s partitioning algorithm)
In Lomuto’s partition algorithm, we maintain 4 variables (i,m,k,j) to define 3 regions: S1
(i+1..m) where the elements are < p, S2 (m+1..k-1) where all the elements are >= p, and
unknown (k..j)

When an element less than the pivot is encountered, it is put in the first region (S1) by first
expanding m and then swapping the current index k with m.

In the first array, we when we encounter '1', we swap it with '4':
[2, 4, 3, 5, 1, 6, 7] -> [2, 1, 3, 5, 4, 6, 7]
This matches the array captured after the program has been terminated.

We can transform the second array [7, 4, 3, 5, 1, 6, 2] to the first array by running partition()
once. Since the first array is a valid initial ordering, so is the second array.

For the last array, the transformation is as follows:
[6, 3, 1, 7, 5, 4, 2] (start)
[6, 3, 1, 5, 7, 4, 2] (insert 5 to S1)
[6, 3, 1, 5, 4, 7, 2] (insert 4 to S1)
[6, 3, 1, 5, 4, 2, 7] (insert 2 to S1)
finished 1st partitioning: [2, 3, 1, 5, 4, 6, 7]
starting 2nd partitioning on [2, 3, 1 ,5 ,4]
[2, 1, 3, 5, 4, 6, 7] (insert 1 to S1, found)

For the third array, the transformation is as follows:
[6, 5, 1, 2, 7, 3, 4]
[6, 5, 1, 2, 3, 7, 4]
[6, 5, 1, 2, 3, 4, 7]
finished 1st partitioning: [4, 5, 1, 2, 3, 6, 7]
[4, 1, 5, 2, 3, 6, 7]
[4, 1, 2, 5, 3, 6, 7]
[4, 1, 2, 3, 5, 6, 7]
finished 2nd partitioning: [3, 1, 2, 4, 5, 6, 7]
[3, 1, 2, 4, 5, 6, 7]
finished 3rd partitioning: [2, 1, 3, 4, 5, 6, 7]
finished 4th partitioning: [1, 2, 3, 4, 5, 6, 7]

As seen, at any point in time, the array does not match with [2, 1, 3, 5, 4, 6, 7].
The closest array to option c that produces [2, 1, 3, 5, 4, 6, 7] is [6, 5, 1, 2, 7, 4, 3]

3. What is the time complexity of f(N) in terms of N?

public static void f(int N) { // pre-cond : N is positive
 int i = 0, jump = N/2;
 while (i < N) {
 i += jump;
 for (int j = i; j < i + jump; j++) {
 System.out.print(“*”);
 }
 }
}

a. O(log N)
b. O(N)
c. O(N log N)
d. O(N2)
e. O(N!)

Ans: b
i ends up somewhere in between N to 2N-2 inclusive. j increases from 0, 1, 2, … and ends up at the
final value of I with no repeated values of j in the middle. Therefore the print statement is executed
O(N) times.

4. What is the time complexity of g(N) in terms of N?

public static int g(int N) {
 int x = 0, y = 0;
 for (int i = 1; i < N; i *= 2) {
 for (int j = 1; j < N; j *= 2) {
 for (int k = 0; k < i; k++)
 x++;
 for (int m = 1; m < i; m *= 2)
 y += x;
 }
 }
 return x-y;
}

a. O(N)
b. O(N log N)
c. O(N (log N)2)
d. O(N (log N)3)
e. O(N2)
f. O(N2 log N)
g. O(N3)
h. O(N4)

Ans: b
The number of times the second loop (over j) runs is independent of the first loop (over i)
The number of times the third loop (over k) runs is independent of the second loop (over j) and
fourth loop (over m) but dependent on the first loop (over i)
The number of times the fourth loop (over m) runs is independent of the second loop (over j) and
third loop (over k) but dependent on the first loop (over i)

As the third and fourth loops contain only O(1) statements, we can just analyze how many iterations
are made in those 2 loops independently, and add them together (as they occur one after the other)

Suppose the second loop performs x iterations per first loop iteration

Third loop

i = 1 2 4 8 … N/8 N/4 N/2
k iterations 1 * x 2 * x 4 * x 8 * x … N/8 * x N/4 * x N/2 * x
Subtotalling O(Nx) time

Fourth loop

i = 1 2 4 8 … N/8 N/4 N/2
m iterations 1 * x log2 * x log4 * x log8 * x … log(N/8) * x log(N/4) * x log(N/2) * x
 = x 1 * x 2 * x 3 * x … (logN - 3) * x (logN - 2) * x (logN - 1) * x
Subtotalling O(x log N) time

Therefore the total time complexity is O(Nx) time, and since x = O(log N), the entire algorithm takes
O(N log N) time

5. The following 2D array is used to simulate circular linked lists cll1, cll2, cll3.

Its first row stores character data and second row stores the index of the next
reference in the array (consider this to be 0-based indexing).

Data A B C D E F G H I J K L
Next 8 0 3 6 11 10 9 4 5 2 1 7
Index 0 1 2 3 4 5 6 7 8 9 10 11

The tail references of cll1, cll2 and cll3 are in index 7, 8 and 9 respectively.

With a function getDataAtM(int tailIndex) that takes in an integer tailIndex
representing the tail and returns the data at the M-th position (where M =
floor(size/2)), where position is 0-indexed (i.e. tail is at (size-1)-th position)

What is the output of getDataAtM(7), getDataAtM(8), getDataAtM(9)?

a. E, K , C
b. E, K, D
c. E, K, G
d. L, B, C
e. L, B, D
f. L, B, G

Ans: f

cll1 - E > L > H (middle L)
cll2 - F > K > B > A > I (middle B)
cll3 - C > D > G > J (middle G)

6. In lecture 5 of the module, we introduced the DoublyLinkedList where each
DListNode contains two references that points to the previous and next node, and
contains an integer element.
Below is an augmented implementation of binary search on a DoublyLinkedList of
integers.

public static int binarySearch(DoublyLinkedList list, int len,
int x) {
 int mid, low = 0;
 int high = len - 1;

 while (low <= high) {
 mid = (low + high) / 2; // integer division

 int integerAtMidIndex = list.getItemAtIndex(mid);

 if (x == integerAtMidIndex) {
 return mid; // Element found
 } else if (x > integerAtMidIndex) {
 low = mid + 1;
 } else {
 high = mid - 1;
 }
 }
 return -1; // Element not found
}

The method getItemAtIndex(int index) returns the integer at the specified position in
the DoublyLinkedList.
You can assume that the getItemAtIndex method traverse from the front if index <
size(list) / 2, from the back otherwise.

What is the worst-case time complexity of the function when it runs on a sorted
DoublyLinkedList of size N? (choose the best option).

a. O(log N)
b. O(N)
c. O(N log N)
d. O(N2)

Ans: c

Worst-case is bounded by traversing between quarter and half the list log N times.

7. A double hashing scheme is used to create a hash table of size 13. The primary and
secondary hash function are h1(k) = k mod 13 and h2(k) = (k mod 19) + (k mod 3),
respectively. Assuming that the index returned by the first two probes are already
filled, what would be the index of the third probe for k = 30.

a. 4
b. 3
c. 2
d. 0
e. 7
f. None of the above

Ans: d

Index = (h1(30) + 2* h2(30)) mod 13
 = (4+2* (11+0)) mod 13 = 0

8. You are given the following three hash functions to implement a hash table of size 10:

Given that the input to the hash table contains integers from 0 to 100, which of the
hash functions below distribute the keys uniformly over buckets 0 to 9?

i. h1(k) = (13*k) mod 10
ii. h2(k) = (7*k2) mod 10
iii. h3(k) = k3 mod 10

a. i only
b. ii only
c. iii only
d. i and ii
e. ii and iii
f. i and iii
g. None of the above

Ans: f

The sequence of keys generated by the hash functions (we only need to check first 10):

h1(k) = (13*k) mod 10

0, 3, 6, 9, 2, 5, 8, 1, 4, 7

Covers all slots from 0 to 9

h2(k) = (7*k2) mod 10

0,7, 8, 3, 2, 5, 2, 3, 8, 7

Don’t cover the slots 1,4,6,9

h3(k) = k3 mod 10

0, 1, 8, 7, 4, 5, 6, 3, 2, 9

Covers all slots from 0 to 9

9. Given a Stack S which contains the following unique integers from top (leftmost) to
bottom (rightmost)

1,2,3,4,5

If S can only re-order its content (without using recursion) by making use of another
initially empty queue Q in the following way:

1. Can only pop an integer from S and enqueue it into Q
2. Can only dequeue an integer from Q and then push it into S
3. 1 and 2 may perform repeatedly to transfer items to and fro between S and Q.

Which of the following options is not a valid re-ordering of S (Choose all options that
apply). If all are valid, choose option e.

a. 5, 4, 3, 2, 1
b. 4, 5, 3, 2, 1
c. 5, 3, 2, 4, 1
d. 1, 2, 5, 4, 3
e. all the above are valid

Ans: e

It is possible using only an extra queue to get all possible permutations of the elements in
the stack. Thus any re-ordering is possible.

Proof of why this is possible:

Proof by induction:

1. Let the items from top to bottom of the stack form a sequence S1.
2. Now any contiguous subsequence starting from the 1st item in S1 (top of the stack) can
be reversed by popping the involved items and offering them into the queue Q1 and then
polling them from Q1 and pushing them back into S. Let call this operation reverse(1,x)
where 1 is the 1st item in S1 from the top and x is the xth item in S1 from the top.

For S containing 1 item: There is only 1 permutation so trivially true.

For S containing 2 items: There are only 2 permutations, the original sequence and the
reverse, to obtain the reverse, call reverse(1,2).

For S containing 3 items: To illustrate let S1 = i1,i2,i3

There are the following permutations:

i1,i2,i3
i1,i3,i2
i2,i1,i3
i2,i3,i1
i3,i1,i2
i3,i2,i1

Keeping i3 as the last item, I can get all permutations of i1,i2 since the they form a stack of 2
items. This is all permutations where i3 is the last item.

All I need now is to have each of the other items i2, i1 to be in the last position and generate
all permutations where they are the last item. This will be all possible permutations of 3
items.

To move i1 into the last position, reverse S1 to be i3,i2,i1 using reverse(1,3) now I can get all
permutations of i3,i2.

To move i2 into the last position, make it the 1st item by performing reverse (1,2) so that S1
is now i2,i1,i3 now reverse the entire S1 to be i3,i1,i2. Now I can get all permutations of i3,i1.

Now assume we can get all permutations where S contains n-1 items, the induction follows
for S containing n items:

S1 = i1,i2 ... in.
Since all permutations can be generated for S containing n-1 items, we can get all
permutation of i1,....,in-1, i.e all items from the 1st to the (n-1)th, keeping in where it is.

Now make in-1 to i1 take turns to be at the last position and generate all possible
permutations of the other subsequences from position 1 to n-1.

To make ix be at the last position
1. reverse i1 to ix using reverse(1,x) so that ix is now the 1st item
2. reverse the entire sequence using reverse(1,n) so now ix is the last item
3. all possible permutation of the other items from the 1st to the (x-1)th can now be
generated.

10. A doubled ended stack is a stack where you can both push and pop from the top or
the bottom of the stack.
Let's call these four operations push_top(), pop_top(), push_bottom() and
pop_bottom() respectively.
Which of the following data structures can be used to implement a doubled ended
stack such that all the above 4 operations runs in worst or amortized case O(1) time.

i. 1 or more array(s)
ii. 1 or more singly linked list(s)
iii. 1 or more doubly linked list(s)
iv. 1 or more hash table(s)

Note: if the option has 2 or more of the above data structures, they are to be used
independently and not in combination to implement the double ended stack.

a. i only
b. iii only
c. i and iii
d. iii and iv
e. i, ii and iii
f. all of i, ii, iii and iv

Ans: c

A double ended stack in this case is simply the same as a double ended queue.

To add or remove from the front and back in O(1) worst case or amortized time only array
or doubly linked list is possible.

Note doubly linked list is possible in this case because unlike the teque lab assignment,
there is no get operation required.

hashtable is not possible to get worst or amortized case O(1) insert and remove unless we
know the maximum number of items from the start and so can make use of a DAT.

2 singly linked list may be used to implement the double ended stack, where the head of
one linked list represent the top of the double ended stack and the head of the other
represents the bottom of the double ended stack. However you can have a case of all n
operations being push_top or push_bottom. In this case for every 2 push you need to re-
balance the 2 singly linked list by removing the node at the end of one of the singly linked
list and adding it to the end of the other linked list, this will still result in O(n^2) for all n
push operations and thus amortized cost of O(n) per operation.

Analysis: 15 marks, 3 problems (5 marks each)

Question 11 and 12 refers to the problem given below:

11. [5 marks] In the array-based implementation of a list/stack/queue, whenever the
array is full, the strategy is to create a new array that is double the size of the current
array. This results in an amortized cost of O(1) time for addBack()/push()/offer() of
list/stack/queue respectively.

Claim: If we change the array enlarging strategy as follows, the amortized cost of
addBack()/push()/offer() is still O(1) time.

New enlarging strategy:

Start with an array of size 12 = 1, when it is full create an array of size 22 = 4, once it is
full create an array of size 32 = 9 etc.

That is, at the xth time you need to create an array, create an array of size x2 (x starts
from 1).

Select the option that is most correct about the claim and gives the most correct
explanation.

a. True because this is simply the doubling strategy itself
b. True because if you make n addBack()/push()/offer() calls you will need to create

O(logn) arrays of size 1,4,9... etc and fill each of them up which result in the same
O(1) time amortized cost.

c. True because if you make n addBack()/push()/offer() calls you will need to create
O(sqrt(n)) arrays of size 1,4,9... etc and fill each of them up, which result in the same
O(1) time amortized cost.

d. False because if you make n addBack()/push()/offer() calls you will need to create
O(sqrt(n)) arrays of size 1,4,9... etc and fill each of them up, which result in
O(sqrt(n)) time amortized cost

e. False because if you make n addBack()/push()/offer() calls you will need to create
O(n) arrays of size 1,4,9... etc and fill each of them up, which result in O(n) time
amortized cost.

f. False because if you make n addBack()/push()/offer() calls you will need to create
O(logn) arrays of size 1,4,9... etc and fill each of them up, which result in O(logn)
time amortized cost.

Ans: d

Now the array sizes grow quadratically that is the 1st array is of size 12, the second array is of
size 22, and so ... the last array need to be of size at least n to store n items so for the last
array which is the xth array you have

x2 = n

x = sqrt(n)

Thus you need to create O(sqrt(n)) arrays.

To create and fill up each of the arrays take total time

O(12+22+32+ ... + sqrt(n)2)

this is a sum of squares with sqrt(n) terms which sum up to sqrt(n)(sqrt(n)+1)(2*sqrt(n)+1)/6
= O(n*sqrt(n))

thus per insertion the amortized cost = O(n*sqrt(n))/n = O(sqrt(n)).

Question 12 to 13 refers to the following problem

12. [2 marks] Consider the following alternative implementation of insertion sort:

public static int binarySearch(int[] arr, int start, int end,
int target) {
 int low = start;
 int high = end;
 while (low < high) {
 int mid = (low + high) / 2; // integer division
 if (arr[mid] < target) {
 low = mid + 1;
 } else {
 high = mid;
 }
 }
 return low;
}

public static void insertionSort(int[] arr) {
 for (int i = 1; i < arr.length; ++i) {
 int correctIdx = binarySearch(arr, 0, i, arr[i]);
 int toInsert = arr[i];
 for (int j = i; j > correctIdx; --j)
 arr[j] = arr[j-1];
 arr[correctIdx] = toInsert;
 }
 }

Instead of checking the elements from the back, we exploit the fact that the array
from 0 .. i-1 is already sorted. We can use binary search to find the correct index of
the element that we want to insert in O(log N) time.

Claim: This version of insertion sort is stable, and its best case and worst case time
complexity is O(N) and O(N log N), respectively.

a. True
b. False

13. [3 marks] Give your rationale for your answer to the previous question.

Ans:

This version is not stable, because the binary search will return the first element which is
not less than the target. In other words, if we have a sorted list of [1,2,3,4,5] and we want to
insert 2 to the list, the new 2 will be inserted before the existing 2.

Just like normal insertion sort, the best case complexity is when the array is already sorted.
In this case, no swap will happen. However, instead of checking the last element of the
sorted array which takes O(1), the binary search algorithm will need to check the entire
sorted array in log(i) time, where i is the current iteration.

The total of work done is log1 + log2 + log3 + ... + logN, which is O(N log N) (recall tutorial 1)

The worst case for this algorithm is when the input is sorted in reverse order. This way,
although the cost of finding the correct index is logn, the cost of shifting the elements is still
O(N), leaving us with O(N2).

Grading Scheme:

There are three (wrong) statements made in Q12:
- The sorting algorithm is stable
- The best time complexity is O(N)
- The worst time complexity is O(NlogN)

To disprove the whole claim, it’s sufficient to disprove any one of the three statements
above.
3 marks:

- Correctly explained why any of the three statements in Q12 is wrong.
2 marks:

- Explained why the claim is wrong, with minor mistakes.
o e.g. assumes the best case of binary search is O(1)

- Correctly explained some statements but made mistake(s) in the other parts.
o e.g. correctly identified the best case but gave incorrect worst case analysis.

1 mark:
- Correctly pointed out the correct statement (i.e. unstable, best case O(NlogN), worst

case O(N^2)) but not enough explanation.
- Made some valid points regarding the statements.

Common mistakes

- Assumes the binary search terminates as soon as it found the element equals to the
target. In the given snippet, it always takes O(logN).

- Only explained that binary search takes O(logN). This statement alone is not enough
to prove/disprove anything.

- Assumes that the sort is stable/unstable just from the existence of swapping. Note
that it's important to see how the swaps are done to check whether the sort algo is
stable or not.

- Explained that the values can be re-ordered or there is no guarantee that the order
is maintained to disprove the stability claim. In this case, it’s guaranteed that the
ordering of elements with equal value will be reversed.

- Forgot to consider the shifting required after finding the correct index.
- Stated the worst case as O(N^2 * logN). There are two common cases:

o forgot that O(N + logN) executed N times is O(N^2 + NlogN), which is just just
O(N^2)

o incorrectly derived the time complexity as 1*log1 + 2*log2 + ... + N-1*log(N-1)

Common answers and their respective marks

- Correctly mentioned the time complexity of binary search, but does not use that
information to answer the question regarding the claim -> 0 mark

- Saying that the algorithm has runtime of O(NlogN) -> 0 mark without proper
explanation, mostly since it's not clear whether the student is talking about the best
case or worst case.

o Note that claiming O(NlogN) in the context of best case analysis is correct,
but O(NlogN) in the context of worst case analysis is wrong.

Stability

- Saying sort is unstable, without explanation -> 1 mark
- "repeated values might be reordered", "position of elements are affected during

insertion", "cannot ensure the elements with same value are not reordered" -> 1
mark

- "repeated values will be reordered" -> 3 mark

Best case analysis

- Saying best case is not O(N), without explanation -> 0 mark
- Saying best case is not O(N) because binary search itself ALWAYS takes logN but did

not explicitly mention the overall complexity of O(NlogN) -> 3 mark
- Saying that searching the index takes N * O(logN) but mentioned that the best case

is O(1) (thus O(n) total) -> 1 mark
- Saying the best case is not O(N) because binary search takes O(logN) and insertion

takes O(N) -> 1 mark (insertion should be O(1) in the best case)

Worst case analysis

- Saying worst case is not O(NlogN), without explanation -> 0 mark
- Saying worst case is not O(NlogN) because it takes O(N) to insert the element, but

did not explicitly mention O(N^2) -> 3 mark
- Saying worst case is O(N^2 * logN) -> 1 mark with proper explanation. otherwise, 0

mark
- Correctly pointed out that each iteration takes O(N) in the worst case:

o If the overall time complexity is claimed as O(N) / O(NlogN), then it's
considered wrong (0 mark). Many student tried to 'prove' that the worst case
is indeed O(NlogN), but said that shifting is required.

o If the overall time complexity is claimed as O(N^2 * logN), then 1 mark is
awarded. It’s technically correct, but not a tight bound.

Question 14 to 15 refers to the following problem

14. [2 marks] Given the following function (which compiles, runs, terminates and does
NOT crash):

public static int pairUp(int[] arr) { // arr has length N
 ArrayList<Integer> list = new ArrayList<Integer>();

 // first set of nested loop
 for (int i = 0; i < arr.length; i++)
 for (int j = 0; j < arr.length; j++)
 list.add(arr[Math.min(i, j)]);// adds to back of the list
 // assume add is worst case

 // O(1) time
 int total = 0;
 // second set of nested loop
 for (int i = 0; i < list.size(); i++)
 for (int j = 0; j < list.size(); j++)
 total += list.get(i) * list.get(j);

 return total;
}

Claim: The time complexity of pairUp is O(N2), since the second set of nested loops is done
after the first set of nested loops complete

a. True
b. False

15. [3 marks] Give the rationale for your answer to the previous question.

Ans: False.

The first set of nested loops adds N2 elements into the arraylist, then the second set of
nested loops does O(1) operations on every possible pair in the arraylist (including (e, e) for
some element e), hence it takes O(N4) time

Grading Scheme:

3 marks to state that it runs in O(N4) with a valid explanation why it is so.
0 marks otherwise

Common Mistakes
A lot of students are stating that it is true that it runs in O(N2), but neglected to realize that
the data that they are working with grew in size in relation to N.

Some students are just telling us that it does not run in O(N2), but did not analyse its
runtime complexity

Structured Questions: 4 questions, 30 Marks

This section is worth 30 marks. Answer all questions.

Write in pseudo-code.

Any algorithm/data structure/data structure operation not taught in CS2040 must be
described, there must be no black boxes. For the written questions partial marks will be
awarded for correct answers not meeting the time complexity required.

16. [5 marks]

A palindrome is a string of characters that reads the same forward and backward.
E.g. "php" and "anna" are palindromes, while "pie" and "java" are not.

There are multiple ways to store a string of N characters in a List ADT.
For each of the N characters, we will attempt to insert it to the List in sequence from
first to last and each one will be inserted to the end of the list.

Which of the data structure(s) given in the options can be used to implement the List
ADT (only 1 list) such that after inserting the string of characters, it also allows us to
come up with a non-recursive algorithm that runs in O(N) worst case time
complexity, and uses worst case O(1) extra space to check whether the string is a
palindrome?

Note: The algorithm to check if the string is a palindrome is not allowed to make
modifications to the data structure.

Choose all options that apply.

a. Array
b. Basic Linked List
c. Tailed Linked List
d. Circular Linked List
e. Doubly Linked List

Ans: a and e

a and e are similar in the sense that we can set curr1 and curr2 references at the start and
end of list (for the array curr1 and curr2 is simply index 0 and index N-1 respectively), and
then compare the characters at curr1 & curr2, and move the references inwards towards
the middle.

Since you cannot modify the data structure, basic linked list, tailed linked list and circular
linked list are not possible to achieve O(n) time as you have to start from the head and go to
last node, then the 2nd last node, then the 3rd last node etc… and this will take O(n^2) time.

17. [5 marks] Mr Zak wants to design a data structure called fastList to store the most recently
used emojis in his chat app. The objective is to read from and write into the fastList in O(1)
average or worst case. The user first searches for emojis in fastList. If the emoji is already in
fastList, it would be accessed from the fastList and also placed to the front of fastList via a
get operation. If an emoji is not in fastList, it needs to be accessed from slowList. Once an
emoji is accessed from slowList, it is added to the front of fastList via a put operation. If the
fastList does not have the space for this new emoji, the least recently used emoji would be
evicted from the fastList so that the new emoji can be added (this is all part of the put
operation). The size of the fastList is fixed.

The read and write mechanisms of fastList are illustrated with an example below.

Assume that the size of the fastList is 4 and each emoji is assigned a unique integer. User
accesses the emojis in the following order: 1,2,3,1,5,2,6

The fastList interface has two methods as mentioned: get(int i) and put(int i), where i is the
emoji number.

fastList: (initially, it is empty)

Access emoji-1 from fastList using get(1). emoji-1 is not present in the fastList. It is read from
slowList and it will be added to the front of fastList via put(1).

1

Access emoji-2 from fastList using get(2). emoji-2 is not present in the fastList. It is read
from slowList and it will be added to the front of fastList via put(2).

 2 1

Access emoji-3 from fastList using get(3). emoji-3 is not present in the list. It is read from
slowList and it will be added to the front of fastList via put(3)

3 2 1

Access emoji-1 from fastList using get(1). It would be relocated to the front of fastList via
put(1).

1 3 2

Access emoji-5 from fastList using get(5). emoji-5 is not in fastList. It is read from slowList
and it will be added to the front of fastList via put(5).

5 1 3 2

Access emoji-2 from fastList using get(2). It will be relocated to the front of fastList via put(2).

2 5 1 3

Access emoji-6 from fastList using get(6). emoji-6 is not in the fastList. It is read from slowList
and it will be added to the front of fastList. Item 3 is the least recently used and it would be
evicted from the fastList.

6 2 5 1

As shown above, the most recently used emoji would be at the front of the list and least
recently used emoji would be at the back of the list. Select the most appropriate method for

the Zak to implement the fastList such that its get and put operations can each be done in
average or worst case O(1) time.

a. Doubly linked list to store the emojis (their number) and a hash table containing

<key,value> entries where the value is a reference to a node of the double linked
list.

b. Singly linked list to store the emojis (their number) and a hash table containing
<key,value> entries where the value is a reference to a node of the singly linked list.

c. Tailed linked list to store the emojis (their number) and a hash table containing
<key,value> entries where the value is a reference to a node of the tailed linked list.

d. An array to store the emojis (their number) and hash table containing <key,value>
entries where the value is an index of the array.

e. A circular linked list to store emojis (their number) and a hash table containing
<key,value> entries where the value is a reference to a node of the circular linked list.

f. A circular array to store emojis (their number) and a hash table containing
<key,value> entries where the value is an index of the circular array.

Ans: a

Requirements:

Eviction of the least recently used element (i.e., last element in the fastList) need to be done
in O(1) on average. Arrays and doubly linked lists can do the eviction of least recently used
element in O(1) on average.

In doubly linked list you can access the 2nd last node via the previous reference of the last
node (pointed to by the tail) thus allowing removal of the last node (the least recently used
emoji) in O(1) time.

Single linked lists, tailed single linked list, and circular single linked lists cannot be used for
eviction of least recently used item in O(1) on average.

After accessing an element from the fastList, we need to move it to the front. Moving an
element at arbitrary index to the front and moving the elements at the front to the right
needs to be done in O(1) on average. Arrays cannot do this as moving the elements at the
front to the right cannot be done in O(n) on average

(a) is correct: we have references in the hashtable for each node in double linked list,
because for the <key,value> entry in the hashtable, the key will be emoji number and the
value the reference to the corresponding node in the doubly linked list. Therefore, we can
swap an element from anywhere in the doubly linked list to the head in constant time.
Eviction of the least recently used element can also be done in constant time as the double
linked list has tail pointer.

18. [10 marks] John's niece has finished playing a game involving n balls of different
numbers which are unbounded floating point values.
Being mummy's good girl, she is placing the balls back into their container which is a
long rectangular box with n (n >= 1000) holes placed along the entire length of the
box from one end to the other end. Each hole is marked with the corresponding
number of the ball that should go into it. The holes are arranged from smallest ball
number to largest ball number from the leftmost hole (call this hole 1) to the
rightmost hole (call this hole n), that is, the holes are arranged in ascending order of
ball number. Eg if there are 3 balls are numbered 1.13, 3.112, 2.77, then the holes
from left to right will be the holes for balls 1.13, 2.77, 3.112 respectively.

Just as she finishes placing all the balls correctly, her baby brother runs past and
kicks the box so that the balls jump out of their hole and are now possibly shifted to
another hole!

After inspecting the container, John discovers that the balls in every mth hole (m =
n/10) is still in the correct position (i.e hole 1*m, hole 2*m, ...).
Call these unmoved holes.

For block of holes fulfilling either one of the following conditions:
1. holes between 2 consecutive unmoved holes
2. holes between the 1st hole and the 1st unmoved hole (if they are not the same)
3. holes between the last unmoved hole and the last hole (if they are not the same)

There can possibly be at most 2 holes among holes in each such blocks with their
balls swapped.

Help John to devise the most efficient algorithm to place all balls correctly back to
their respective holes.
You can assume that number of the balls are unbounded floating point values in the
range 1.0 to 100.0 respectively.
The container is represented by an array A of size n, with each slot representing a
hole (slot 0 is hole 1, slot 1 is hole 2 etc) and the number of the ball in the hole is
stored in that slot. The value of m is also given to you.

Ans:

Since the unmoved holes are n/10 holes apart, there are then at most about 10 blocks of
holes fulfilling the conditions as given in the problem definition.

Each block being about n/10 holes in size.

Since only 2 holes have their ball swapped in each block as defined in the problem definition,
we can re-sort all the balls back into their correct holes in each block using Insertion sort
that will take worst case O(2*n/10) = O(n) time.

To do so simply go through the array A as follows to perform the sorting.

1. Let start = 0, end = n/10
2. while (start <= n-1)

InsertionSort(A,start,end) // insertion sort only from index start to index end
start = end+1
end = minimum(end+n/10,n-1)

since the while loop will loop at most about 10 times regardless of n, thus it is bounded
and so worst case time complexity is O(10*time complexity of InsertionSort) = O(10*n) =
O(n).

Even simpler solution:
There are at most about 10 block of holes where at most 2 balls in each block has their holes
swapped. That means in total there are only about 20 balls that are out of place, meaning
only 20 values that are out of their sorted order in the array. So simply use insertSort to sort
the entire array in worst case O(20*n) time = O(n) time.

Grading Scheme:
1. Identified that the problem can be solved using insertion sort or wrote a
code/description to swap misplaced elements in O(n) –> 10 marks
2. Gave the algorithm to swap elements in O(n), but errors in identifying the index of
misplaced balls –> 8 marks
3. Identified the solution, but complexity O(n*log n); eg: merge sort -> 7 marks
4. Identified the solution with complexity O(n^2); eg: quick sort, bubble sort, selection
sort - 5 marks
5. One pass bubble sort or solution that leads to incomplete swap –> 3 marks
6. Radix sort -> 2 marks
7. Wrong and incomplete description (linked lists, sort method without specifying the
sort technique) -> 2 marks

Common Mistakes:

1. Ball numbers and indices of holes are assumed to be same, i.e., A[i] = i is the target.
Hole numbers are integers while ball numbers are unbounded floating-point values.
Eg:

Hole # 1 2 3 4 5 6 7 8
Ball # 1.2 1.8 3.6 4.1 4.5 4.7 5.0 7.1

2. Some students assume that one iteration of swapping adjacent elements of the array
sorts the array: it’s a one pass (iteration) bubble sort.
Hole # 1 2 3 4 5 6 7 8
Ball # 1.2 5.0 3.6 4.1 4.5 4.7 1.8 7.1
Balls at indices 2 and 7 are swapped.

After one iteration of bubble sort:
Hole # 1 2 3 4 5 6 7 8
Ball # 1.2 3.6 4.1 4.5 4.7 1.8 5.0 7.1

It is incomplete.

3. Some students assume that only the balls in adjacent slots are swapped, which is
untrue. Therefore, after swapping adjacent pair of elements the list won’t be sorted.

4. Improved bubble sort: It also takes O(n^2). Try it on the above example.
5. Some students suggested quick sort. However, quick sort is O(n^2) for almost sorted

arrays.
6. Several students suggested merge sort, selection sort and bubble sorts. The time

complexity of merge sort is O(n log n). The time complexity of selection sort and
bubble sort are O(n^2).

7. Auxiliary data structures such as hashmaps, double linked lists, stacks, etc. are
proposed without justification.

19. [10 marks] Ivan took n photographs on a trip. You are given n, as well as an array r
of each photograph’s rating in sequence (the ratings may be arbitrarily large
integers).

You are to write an algorithm, to most efficiently recommend, for each photograph j
from j = 1, j = 2, j = 3, ... to j = (n-1) in that order, all the photographs i taken before
photograph j that have strictly lower ratings than j , i.e. i < j and r[i] < r[j], for which
photograph i has not already been recommended.

For each recommended pair of photographs, output (j, i) ordered by non-descending
j, using ascending i to break ties.

e.g. for input r = [8, 6, 3, 2, 1, 3, 1, 7, 4], the output should be:
 (5, 3)
 (5, 4)
 (7, 1)
 (7, 2)
 (7, 5)
 (7, 6)

The photographs at indexes 3 and 4 are recommended in the photograph at index 5,
but will not be recommended again with the photograph at index 7.

Ans:

This question requires identifying pairs (j, i), where j and i are indexes of r satisfying all of:
• i < j – comparing indexes, photograph i has to be taken before photograph j
• r[i] < r[j] – comparing array elements, photograph i has strictly lower rating than

photo j
• each photograph appears at most once as the second element in the pair (as i within

(j, i)):
 if it can appear multiple times, it should be tied to the lowest possible j
– recommend, for each photograph j = 1, 2, … n-1 in that order, … for which
photograph i has not already been recommended

The output should be ordered by (j, i) ascending.

Brute-Force O(N3) Solution

ArrayList<Integer> rec = new ArrayList<>();
for (int j = 1; j < n; j++) {
 for (int i = 0; i < j; i++) { // or < n but check i<j later
 if (r[i] < r[j] && !rec.contains(i)) {
 S.o.println(“(“ + j + “, ” + i+ “)”);
 rec.add(i);
 }
 }
}

The arraylist rec stores indexes of recommended photographs. Checks between indexes and
ratings of i and j are made. No sorting is required as the order of iteration already causes
output to be ordered (j, i) ascending.

Using HashSet to Store Recommended Photographs, O(N2) AVERAGE Solution

HashSet<Integer> rec = new HashSet<>();
for (int j = 1; j < n; j++) {
 for (int i = 0; i < j; i++) {
 if (r[i] < r[j] && !rec.contains(i)) {
 S.o.println(“(“ + j + “, ” + i + “)”);
 rec.add(i);
 }
 }
}

HashSet improves the time taken to search whether a photograph i has already been
recommended from O(N) worst, to O(1) average. Do note that HashSet operations are NOT
O(1) worst case. In the unfortunate event that there are many collisions, it is possible to get
many > O(1) operations.

Lazy Deleting Recommended Photographs, O(N2) WORST-Case Solution

boolean[] rec = new boolean[n];
for (int j = 1; j < n; j++) {
 for (int i = 0; i < j; i++) {
 if (r[i] < r[j] && !rec[i]) {
 S.o.println(“(“ + j + “, ” + i+ “)”);
 rec[i] = true;
 }
 }
}

We can place a mark on each photograph to note whether it is recommended or not. In
order not to mutate the ratings in r, we can create a parallel array of the same length as r to
note whether a photograph i has been recommended or not.

Monotonic Stack, O(N) Solution

You may realize that you can only recommend photograph i to a later photograph j when r[i]
< r[j], after which the earlier photograph i is out of the picture. So if we remove all
photographs which have already been recommended halfway through the algorithm (after
some recommendation for some j completes), we will never see any two unrecommended
photographs with the later one having a higher rating.

This means we can maintain a list of ratings that are not yet recommended, they are
guaranteed to be in non-ascending order i.e. r[i] >= r[j] for i < j. Since all photographs that
qualify to be recommended need to have rating < r[j], we can start from the lowest rating
till either all photographs are recommended, or we find a photograph with rating >= r[j]
which cannot be recommended to this photograph j.

Therefore we can compare r[j] with the last-inserted element of the list which is guaranteed
to have the (or one of the) lowest rating. This means the list can be viewed as a stack, since
we only add, access and remove elements from one end. Since we need the indexes i and j,
we should store the photograph index, not the rating (which may not be unique).

Every photograph i on top of the stack that qualifies to be recommended can be popped out
of the stack and paired with the current photograph j. With j moving from 0 to n-1 inclusive,
and the latest (yet unrecommended) photograph i being popped from the stack, the output
is ordered: (j ascending, i descending). Therefore, the indexes popped from the stack for
each j need to be first reversed.

// one photo is a <rating, index> pair
// stack invariant is that the:
// photos are in chronological order (latest at top)
// ratings of i non-ascending (one of the smallest at top)
Stack<Pair> unRec = new Stack<>();
for (int j = 0; j < n; j++) {
 int newRating = r[j];

 // reverse the ‘i’s with strictly lower ratings
 Stack<Integer> toRec = new Stack<>();
 while (!unRec.isEmpty() && unRec.peek().rating < newRating)
 toRec.push(unRec.pop().index);

 // output (j, i) pairs, j already ASC, now also i ASC
 while (!toRec.isEmpty())
 S.o.println(“(“ + j + “, ” + toRec.pop()+ “)”);

 // photo j is not yet recommended
 unRec.push(new Pair(r[j], j));
}

Each photograph gets pushed at most once into unRec, popped at most once from unRec,
pushed at most once into toRec, and popped at most once from toRec. Though a
photograph at the top of the stack may be accessed more than once, over the entire
algorithm, there will be at most n-1 peek() calls which do not result in the top being popped
(because j would advance to the next photograph in such a case).

Grading Scheme:

Correct solutions:
• 10 marks – O(N) worst-case
• 8 marks – O(N log N) worst-case / O(N log N) average / O(N) average

Typically, unnecessary sorting for O(N log N)
Typically, unnecessary use of hash table for O(N) average

• 6 marks – O(N2) worst-case
• 5 marks – O(N2) average
• 4 marks – O(N2 log N) worst-case

Typically, unnecessary repeated sorting when each pair is recommended
• 3 marks – O(N3) worst-case

1 mark deducted – Each minor mistake

2 marks (3 marks) deducted – Not ordering 1 dimension (2 dimensions) correctly

Major mistakes (affecting whether identified pairs meet the 3 conditions):
• 3 marks deducted – Using HashMap with rating as key, thereby losing elements
• Max 1 mark – allowing photo i that appears AFTER j to be recommended to j
• Max 1 mark – not comparing rating of photo i with respect to photo j
• Max 1 mark – not filtering only photographs that are not yet recommended
• Max 1 mark – messing up array indexes greatly and relying on the wrong indexes

0 marks – 2 or more major mistakes, as there is a simple check for each of the 3 required
conditions

No special credit for:
• creating linked lists
• reorganizing data using hashing
• sorting / swapping / partitioning / divide-and-conquer

as unfortunately any one of these strategies does not advance closer to the goal

Providing alternatives – You are at risk of having the solution with the lowest marks
awarded!

Common Mistakes

• Declaring the outermost loop control variable to be i, the inner loop’s be j. Swapping
variable names is technically not wrong but MANY students confused themselves
doing so

• Using ratings in place of indexes – these are NOT interchangeable for this question as
ratings can be very large (you don’t even know if they are negative or not). If you
loop over each rating, you run the risk of getting very bad time complexity, and you
may go out of bounds if there are negative ratings. If you mark or search for indexes
based on ratings then you may lose track of position once there are duplicates

• Confusing ratings r[i] r[j] with indexes i j; confused/unclear about “for i in r” vs “for i
= 0 to < n”

• Returning instead of outputting/printing – Return generally terminates the function
immediately, and the program does not provide any output to the system

• Searching for already recommended photo by comparing i against a (j, i) pair in the
output

• Looping over i starting from 1 and missing out index 0; allowing i to be larger than j
when iterating; looping over i from j-1 downwards but checking only i < j and
forgetting about i >= 0

• Searching for a key or key-value pair in a HashMap by value; searching for the next
smaller key (i.e. lower / predecessor) in a Hashtable when it is an unordered data
structure

• Attempting to sort a Hashtable – Hashtable is an unordered data structure, if you
mess up the index each element is at, then you can’t use the same hash function to
find the element anymore

• Wasting time creating comparators and sorting output that is already ordered by (j, i)
ascending

• Using radix sort, thinking that “radix sort takes O(n) time” – forgetting about the
number of digits and buckets required

• (This is more python-specific) Having an output list: output = [], and then output += (j,
i) – the dimensioning is incorrect

• Using a for loop over a stack instead of popping while there are still elements within
– Not really a valid pure stack operation. If used over an array-based stack, will
iterate over elements from bottom to top of the list/stack

• Attempting to recommend photograph to one with next higher rating – This doesn’t
take position of the photographs into account: i may not have appeared yet relative
to j, or i may already be recommended to some photograph k that appeared in the
middle of the two (i < k < j so would have already output (k, i))

• Attempting to recommend only adjacent photographs (i.e. (i+1, i))
• Thinking that there are somehow 2 types of photographs: i photographs and j

photographs – But the question says that you need to recommend some
photographs i for each photograph j = 1, 2, 3, .. n-1, i.e every photograph (except the
first) could be a photograph j, regardless of whether it becomes a photograph i later
or not

	MCQ: 30 Marks, 10 Questions (3 Marks each)
	Analysis: 15 marks, 3 problems (5 marks each)
	Structured Questions: 4 questions, 30 Marks

