
CS2040 2022/2023 Sem 4 Midterm

MCQ: 40 Marks, 10 Questions

1. You are given an unknown data structure X, which can be either a stack or a queue.
This data structure only supports integers from 0 to 9 (both inclusive), and currently
has 2 unknown values stored within. Additionally, this data structure has the
following methods:

insert(e): Runs push(e) if X is a stack, or offer(e) if X is a queue. This method has no

return value. The parameter e must be an integer from 0 to 9.

remove(): Runs and returns the result of pop() if X is a stack, or poll() if X is a queue.

check(): Runs and returns the result of peek() regardless of whether X is a stack or a

queue.

A call to any of these methods count as one operation. Determine the minimum

number of operations needed to determine in all possible cases whether X is a stack

or a queue.

a. 2
b. 3
c. 4
d. 5

2. Refer to the method below to answer this and Q3:

int gcd(int a, int b) {

 int ans = 1;

 int mult = 1;

 while (mult < a) {

 mult++;

 if (a % mult == 0 && b % mult == 0) {

 ans = ans * mult * gcd(a/mult, b/mult);

 break;

 }

 }

 return ans;

}

The method gcd(a, b) is called with 2 parameters a and b, which are distinct positive

integers with values of >= n and <= 2n for some variable n. Determine the best case

time complexity of gcd(a, b) in terms of n.

a. O(log n)

b. O(n0.5)

c. O(n)

d. O(n log n)

3. Determine the worst case time complexity of gcd(a, b) in terms of n.

a. O(log n)

b. O(n0.5)

c. O(n)

d. O(n log n)

4. A sorting algorithm (using lecture implementation) is used to sort the first array
given below. The resulting array is shown as the second array.

Initial: 4 7 3 2 4 1 6 5

Final: 1 2 3 4 4 5 6 7

At some point while the sorting algorithm was running, the array looked like this:

 2 3 4 7 4 1 6 5

The above only shows the array itself, and does not show any temporary variables or

data structures that were used in the sorting algorithm. Determine the sorting

algorithm that could have been used.

a. Bubble Sort

b. Selection Sort

c. Quick Sort

d. Merge Sort

5. You are given an empty hash table of size 11, with h(key) = key % 11 as the hash
function, and quadratic probing as the collision resolution technique.

The following keys are to be inserted one at a time (though not necessarily in that
order) into the hash table:

3, 32, 41, 53, 66, 75, 87

Determine the minimum number of collisions that can occur when inserting these
keys.

a. 2

b. 3

c. 4

d. 5 or more (this includes infinity (ie. no slot can be found for a key even in the best case))

6. You are given a sorted array A of size 2n (where n is a positive integer). Additionally,
this array has a special property:
Every pair of elements A[i] and A[2n-i-1] (where i is an integer between 0 to 2n-1
inclusive) sum up to the same value p.
Unfortunately, the array was corrupted, and now one element has been randomly
replaced with a different value, resulting in one pair of elements not summing up to
p.

You are asked to determine the indices of the pair that does not sum up to p. You
are provided the corrupted array A, the size (2n) and the value of p.
The fastest algorithm to do this runs in worst case:

a. O(1) time

b. O(log n) time

c. O(n) time

d. O(n log n) time or worse (this includes the case where the problem is impossible to

solve)

7. You are given a linked list with the following properties:
1. When iterating over the list, beginning from the head, the values encountered

are 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3… (this patten repeats for a very long time).

2. The linked list could either be a circular linked list (with tail reference) or a tailed

linked list.

3. The size of the list is finite.

Which of the following code would always return true if the linked list is a circular
linked list, and never return true if the list is not circular? Select all that apply. It is
guaranteed that at least one option is correct, and so this question should not be left
blank.

a. return num_nodes == 3; // num_nodes is assumed to contain the

 // correct number of nodes in the list

b. curr = head;

while (curr != null && curr != head) {

 curr = curr.next;

}
return curr == head;

c. return tail.next == head;

d. return tail.value == 3

8. You are given the following hash table:

Index 0 1 2 3 4 5 6 7 8 9 10

Key 26 23 79

It is known that:

1. The hash table uses h(key) = key % 11 as the hash function.

2. Collision resolution is done by double hashing, with h2(key) = (key % 7) + 1 as the

second hash function.

3. The hash table was initially empty upon creation.

4. Various keys were then inserted one at a time into the hash table, and deleted one

at a time from the table. For deleted keys, their old positions appear as empty in the

table above (functionally, they are marked as deleted, but you cannot deduce their

positions from the table above).

Note that for step 4, there is no requirement that all keys are inserted before all deletions

occur (ie. insertions and deletions can be mixed in with each other).

Determine the minimum number of deletions that is required to produce this table.

a. 4

b. 5

c. 6

d. 7 or more (this includes the case where the table is impossible to produce regardless

of the number of deletions)

9. You are given the following unsorted array, where each element consists of an
integer value and a string:

4
"A"

3
"D"

4
"C"

2
"B"

1
"A"

8
"C"

3
"B"

5
"G"

You are allowed to pick any sorting algorithm (using lecture implementation) to sort this

array. All sorting algorithms will use only the integer value as the sort key, but will move the

entire element (ie. both the integer and the string) as a whole.

Determine the number of different resulting arrays that can be achieved (here, two arrays B

and C are different if for any valid index i, B[i].value != C[i].value

or !B[i].string.equals(C[i].string)).

a. 1

b. 2

c. 3

d. 4

10. You are given a basic linked list with 3 elements, and the following code fragment:

head.next.next = head.next.next.next

head.next = head.next.next

head = head.next

What happens to the linked list at the end of the code above? You may assume there

is no need to update the num_nodes value.

a. The first two elements are removed.

b. The middle element is removed.

c. The last two elements are removed.

d. All elements are removed.

Analysis: 18 marks, 3 questions (6 marks each)

11. [6 marks] Jasper the tree frog is excellent at leaping. In one leap, he can achieve a
distance of x centimeters. However Jasper cannot maintain this distance if he leaps
continuously, and he will eventually run out of stamina and thus can only leap
consecutively for n-1 times (n > 2). Assuming the first leap is the 0th leap where
Jasper can cover a distance of x centimeters, the distance covered by Jasper will be

(1 − (
1

𝑛−𝑖
)) ∗ 𝑥 for the ith leap after the 0th leap.

Based on the above we can conclude that a tight upperbound on the distance
covered by Jasper will be O(nlogn)*x.

a. This is false. Tight upper bound should be O(logn)*x since the distance of each
leap is reduced by a constant fraction of the distance of the previous leap.

b. This is false. Upper bound should be O(n)*x. The reason is as follows:
If Jasper does not have any reduction in his leaping distance then he will leap a total
of (n-1)*x distance, which is upper bounded by O(n)*x.
However each time he leaps his distance is reduced by some amount and the sum of
this total reduction in leaping distance is upperbounded by O(logn)*x.
So total distance covered is (n-1)*x-(logn)*x which is still tightly upper bounded by
O(n)*x.

c. This is false. Upper bound should be O(1)*x. The reason is as follows:
If Jasper does not have any reduction in his leaping distance then he will leap a total
of (n-1)*x distance.
However each time he leaps his distance is reduced by some amount and the sum of
this total reduction in leaping distance is (n-2)*x.
So total distance covered is (n-1)*x-(n-2)*x which is tightly upper bounded by O(1)*x.

d. This is true. Since Jasper can leap n-1 times and each leap will average out to be
a distance of O(logn)*x, so total distance is tightly upper bounded by O(nlogn)*x

Question 12 to 13 refers to the following problem

12. [3 marks] For a hash table using separate chaining as a collision resolution

technique, if a sorted arraylist instead of a linked list was used, then insertion,

deletion and retrieval can be done in worst case O(logn) time instead of worst

case O(n) time.

The statement is true or false?

13. [3 marks] Give your rationale for your answer to the previous question.

Question 14 to 15 refers to the following problem

14. [3 marks] Given the following function:

somefunction(int[] arr):

 sum = 0

 for (int i = 0; i < arr.length; i++)

 sum += arr[i]

return sum

John concludes that the time complexity of the function is O(n) where n is the length
of arr. So for all arrays which are of length 0, the function will take O(0) = 0 time.

John is correct.

15. [3 marks] Give your rationale for your answer to the previous question.

Structured Questions: 4 questions

This section is worth 42 marks. Answer all questions.

Write in pseudo-code.

Any algorithm/data structure/data structure operation not taught in CS2040 must be
described, there must be no black boxes.

Partial marks will be awarded for correct answers not meeting the time complexity
required.

16. [6 marks] John wants to implement an ADT with the following operations:

1. void insertFirst(int val) - insert a positive integer value val as the first item in the
 ADT

2. void insertLast(int val) - insert a positive integer value val as the last item in the
 ADT

3. void deleteFirst() - delete the first item in the ADT. If the ADT is empty nothing is

done.

4. void deleteLast() - delete the last item in the ADT. If the ADT is empty nothing is
Done

5. int getVal(int i) - return the item at index i (using 0-based indexing, i.e first item is
at index 0). if i is not valid, i.e i < 0 or >= n where n is the size of the ADT, return -1

such that each of the above operations can run in average O(1) time or better (note
that worst case O(logn) is not better then average case O(1)).

The following DSes can be used to implement the John's ADT so that they run in the
required time complexity (choose all correct options that apply):

a. A Queue + some extra variables

b. A Stack + some extra variables

c. A Linked List + some extra variables

d. A Hashtable + some extra variables

e. A Array List + some extra variables

f. None of the above options can implement the required operations for John's ADT
so that they run in the required time complexity.

17. [6 marks] There is a queue in a town for a local attraction. As a way to “spice up” the

queueing experience, the organisers have decided to introduce a special rule: at

times, their mascot may join the queue, and during this time, the next person who

gets to enter the attraction will be the person immediately in front of the mascot,

instead of the person at the front of the queue. During this time, no new people are

allowed to join the queue.

 You are to write a program to simulate this queue. Your program should support the

 following methods:

1. queue(String x): the person with name x joins the back of the queue if the

mascot is not in the queue, otherwise nothing is done.

2. dequeue(): if the mascot is not in the queue, the person at the head of the queue

leaves the queue. Otherwise, the person immediately in front of the mascot

leaves the queue. In either case, this method is expected to output the name of

the person that leaves the queue and remove the person from the queue. It is

guaranteed that a valid person to leave the queue exists.

3. mascotJoin(): the mascot joins the back of the queue. It is guaranteed that the

mascot is not in the queue when this is called.

4. mascotLeave(): the mascot leaves the queue. It is guaranteed that the mascot is

in the queue when this is called.

You may assume that everyone in the town has a unique name, and once they have

left the queue, they will not rejoin the queue again.

 As an example, suppose the current people in the queue are as follows:

 Bob, Sam, Amy, Pat

Where the leftmost person is at the front of the queue. If dequeue is called, the

queue now looks like this:

 Sam, Amy, Pat

 Where Bob is the person that has left the queue. Suppose the mascot has joined the

 queue at this time, thereby forming:

 Sam, Amy, Pat, Mascot

 After another dequeue, the queue would be:

 Sam, Amy, Mascot

 As Pat is the person immediately in front of the mascot, they are the next person to

 leave the queue. Finally, the mascot leaves, causing the queue to be:

 Sam, Amy

After another dequeue, Sam leaves, leaving Amy as the only person still in the

queue.

Determine the possible data structures that can support all operations in worst case

O(1) time. Select all that apply:

a. A doubly linked list + additional variables

b. A tailed linked list + additional variables

c. A basic linked list + additional variables

d. A stack and a queue + additional variables

e. A hashtable + additional variables

18. [14 marks] You are given a doubly linked list and node class with the following
attributes:

doubly linked list class attributes:
head - reference to the first node of the doubly linked list
tail - reference to the last node of the doubly linked list
num_nodes – the number of nodes in the doubly linked list

node class attributes:
val - item (an integer value) contained in the node
next - reference to the next node
prev - reference to the previous node

The doubly linked list class has the following implemented operations (which you can
use as is):

1. insert(index, item)
2. insertLast(item)
3. insertFirst(item)
4. delete(index)
5. deleteFirst()
6. deleteLast()
7. getNodeAtIndex(index)
8. getFirstNode()
9. getLastNode()
10. size()

Now implement a new operation for the doubly linked list class described as follows:

void translocation() -
Split the doubly linked list into half, the last index of the 1st half = (length of
list)/2 where / is integer division.
Switch both halves so that the first half becomes the 2nd half and the 2nd half
becomes the 1st half of the list.
If there is <= 1 items in the list then no change should be made to the list.

E.g given a doubly linked list containing the integers as follows from left to right

1, 2, 3, 4, 5

after applying the translocation operation it will be as follows:

4, 5, 1, 2, 3

You can directly access the attributes in the doubly linked list class and node class in
order to manipulate them and implement translocation()

An example is given below:

int example_operation() // implementation of an example operation in the doubly
linked list class
 first_item = head.val
 second_item = head.next.val

 return first_item+second_item

19. [16 marks] A sequence of positive numbers representing signals from space are
being recorded by the government agency DDEA (Department to discover
extraterrestrial activity) at regular intervals.
In order to properly and efficiently record and make sense of the signals, DDEA
requires you to implement a ADT that consists of the following operations:

1. insert(int x): insert a signal x into the ADT as the latest signal being recorded.

2. insertAndTrack(int x): insert a signal x into the ADT as the latest signal being

 recorded and also track the largest signal from this point onwards.This is called a
 tracking.

For example, if the following signals are inserted with the bolded and asterisked one
being inserted and tracked

1,2431,14,41,33*,8178,221,13,11

then at the point when 11 is inserted, the largest signal being tracked will be 8178.

Another example:

231,1411*,13,131,111

at the point when 111 is inserted, the largest signal being tracked will be 1411.

Note that multiple trackings can be done. An example is as follows

321, 32131, 132*, 3113, 773111, 13119*, 31781, 1313

when 1313 is inserted, the tracking that starts at 132 will have 773111 as the largest
signal being tracked, while the tracking that starts at 13119 will have 31781 as the
largest signal being tracked.

3. LargestSignalOfLatestTracking(): return the largest signal of the latest tracking.

For example:

1,2431,14,41,33*,8178,221,13,11 → there is only 1 tracking with largest signal
tracked being 8178, so 8178 is returned.

Another example:

321, 32131, 132*, 3113, 773111, 13119*, 31781, 1313 → there are 2 tracking with
one having largest signal 773111 and the other (the latest tracking) having largest
signal 31781. Thus 31781 is returned.

4. delete(): This will delete the latest recorded signal. If there is a tracking associated
with the signal (i.e the signal was inserted using insertAndTrack()) remove the
tracking too.

Determine the most appropriate DS(es) to use and implement each of the above
operations so that they will run in worst case O(1) time.

	MCQ: 40 Marks, 10 Questions
	Analysis: 18 marks, 3 questions (6 marks each)
	Structured Questions: 4 questions

