CS2040 AY19/20 ST2 Midterm Solutions

(CS2040 Teaching Staff
July 2020

Q1. The Museum of Valuable Liquids.

You have N liquids to take, each with Weight[i] kg available to be taken, and total value $ Valuel[i] for
the entire weight. You only can carry a maximum of C' kg of liquids. For every liquid, you can choose
to take none of it, part of it, or the entire amount.

What is the maximum value can you carry out?

(Note: This is known as the fractional knapsack problem.)

(a) Algorithm

Algorithm 1 Compute maximum value of items you can bring out, for max capacity C
function EXTRACT(C, N, Weight[1..N], Value[l..N])

Items < [1..N]
SORTDECREASING (Items, item — Valuelitem]/Weight[item]) > Sort by value per unit weight

val < 0

for all item € Items do > Take items in decreasing value/weight ratio
if C <0 then break > Stop if already full
max Allowed < min(Weight[item], C) > Take as much as possible

C + C — maxAllowed
val < val + max Allowed x (Valuelitem]/Weight[item])
end for
return val
end function

(b) Runtime Analysis

Before the loop, we initialize some variables. The first Items « [1..N] line takes O(N) time to create
the array. Then, calling SORTDECREASING takes O(N log N), as our comparison function runs in O(1).
The remainder of the statements (val < 0 and returnwval) are O(1). Thus, everything outside of the
loop runs in O(N log N).

Inside the loop body, we have a constant number of arithmetic operations, and so this runs in O(1).
The loop runs for at most N iterations, so the whole loop runs in O(N).

Thus, the total time our algorithm takes is O(Nlog N) + O(N) = O(Nlog N).

(c) Optimal Answer

Assume for simplicity, that all liquids’ value-to-weight ratios are different. (If two liquids have the same
ratio, we can combine them and treat them as the same liquid.)

Let’s say we have some different answer OTHER, that picks different amounts of different liquids from
our EXTRACT algorithm, and gets the optimal value, better than that of EXTRACT. We order the
choices of liquids made, by decreasing value-to-weight ratio.



EXTRACT

OTHER

MODIFIED

Figure 1: Redder hues indicate higher value/weight ratio.

As EXTRACT and OTHER are different, there is some liquid L with the best value/weight ratio, that
EXTRACT chose fully, while OTHER chose some lower value/weight liquids for.

We create a MODIFIED solution almost identically to OTHER, but for that segment of capacity, we
copy EXTRACT’s choices and choose L instead. In that segment, the overall value/weight ratio strictly
increases compared to OTHER. Now, MODIFIED is a solution better than OTHER, but we originally
assume that OTHER was the best! Hence we derive a contradiction, and we cannot do better than
EXTRACT.

(EXTRACT is what we call a greedy algorithm, where we repeatedly take the ‘best right now’ choice
at all times. This form of optimality proof is called an exchange argument. Given a supposedly optimal
solution, we ‘exchange’ part of that solution for the corresponding part of our solution, and improve it
further, which contradicts the supposed optimality.)

Q2. Duplicate Removal

Given an (potentially unsorted) array of n integers, return a duplicate-free version of the array.
(Note: The question stated ‘duplicate-free list’, and did not state clearly that you cannot lose any
elements.)

(a) Of(nlogn)

Sort the array so that all copies of the same element are adjacent to each other, then do a linear pass
over the array to remove the duplicates.

Algorithm 2 Duplicate Removal in O(nlogn)

function REMOVEDUPLICATES(n, A[l..n])
SORTINCREASING(A)
output < []
Append A[1] to output
for ¢ + 2 ton do
if Afi] # Afi — 1] then
Append A[i] to output
end if
end for
return output
end function

We sort all the items in O(nlogn), then scan the sorted array in O(n). By sorting, all duplicate items
are grouped together in a contiguous chunk in the array. Then, whenever we see two adjacent items with
distinct values, the second one is the head of a new chunk, and so we add it as a new distinct item.

One implicit assumption, is that comparison is O(1) time.



(b) O(n) average/w.h.p

Make a linear pass over the array, and keep track of the elements seen in a hash table to detect duplicates.

Algorithm 3 Duplicate Removal in expected O(n)

function REMOVEDUPLICATES(n, A[l..n])
H < empty hash table
output < []
for i < 1to N do

if A[é] is not in H then
Insert A[i] into H
Append A[i] to output
end if
end for
return output
end function

This solution assumes that hashtable operations all run in amortized O(1), instead of the possible
worst-case time of O(n).

(Extra out-of-syllabus notes: If we have a fixed hash function like in Java, then there is always a
worst case input with all items colliding, causing hashtable insert to be O(n). Hence, hashtable analysis
is actually done with choosing a random hash function, from a family of possible hash functions. Hence,
‘with high probability’, we get a even distribution of keys. This concept will be explored more in
(CS3230/5330.)

Partial Credits
e Radix Sort

Radix sort runs in O(nd), where d is the maximum ‘digit length’ of the keys to sort. However, we
did not give any bound on the range of integers to compare, so you must declare the assumption
that d is a small constant that can be absorbed into the O.

Even so, as long the maximum value is at least n, then we have at least log, n digits (in base b).
Then, asymptotically, radix sort runs in O(nlog,n) = O(nlogn), and does not perform better
than the comparison sorts.

Q3. Merging Binary Heaps
(a) O(n+m)

Combine the elements in both of the heaps into a single array, and then run heapify.

Algorithm 4 Merge Binary Heaps in O(n + m)
function MERGEHEAP(n, hy, m, hs)
he
Add all elements in Ay to h
Add all elements in hy to h
HEAPIFY (h)
return h
end function

Assuming both heaps can be converted into flat arrays with no structure (e.g. for binary heaps, we
return the inner array), we can simply combine these two arrays, and perform MAKEHEAP/HEAPIFY on
the combined array. This takes O(n 4+ m) for both concatenating the arrays, and MAKEHEAP.



(b) O(nlogm)

Another method to combine heaps, is to treat only one side as a bag of elements of size n, and repeatedly
INSERT them into the other heap of size m.

Algorithm 5 Merge Binary Heaps in O(nlogm)
function MERGEHEAP(n, hy, m, hs)
for all item € h; do
Insert item into ho
end for
return ho
end function

(c) O(min{n + m,nlogm,mlogn})

We first compute all of n + m, nlogm, mlogn, and take the minimum of them.

e If the minimum is n + m, we make use of the strategy in (a), where we call MAKEHEAP on the
combined array.

e Otherwise, if the minimum is nlogm, we use the strategy in (b), and repeatedly INSERT each of
the size-n heap’s elements into the size-m heap.

e A similar idea applies to the case where mlogn is minimum, and we use (b)’s strategy again, but
exchanging the roles of the size-m and size-n heaps.

Analysis: (Here, logn will refer to the base-2 logarithm.)

The initial arithmetic involves a constant number of arithmetic operations, and so is O(1) time. In
other words, the maximum time is at most some constant k.

Now, we analyse the time taken for the chosen strategy:

e Minimum is n 4 m:
This runs in f(n,m) € O(n + m) time. In other words, we have some constant k;, such that
f(n,m) < ki(n+m) for large enough n, m.

e Minimum is nlogm:
This runs in g(n,m) € O(nlogm) time. In other words, we have some constant k2, such that
g(n,m) < ka(nlogm) for large enough n, m.

e Minimum is mlogn:
Similarly, this case runs in g(m,n) < ko(mlogn) for large enough m,n.

Let k = max(kg, k1, k2). Then, assume m,n are greater than 2 (so that logm,logn > 1). Then, we
can say that the overall algorithm runs in:

ki(n+m) (n+m <nlogm,mlogn)

h(m,n) < ko+ 4 ka(nlogm) (nlogm < n+m,mlogn)

ka(mlogn) (mlogn < n+m,nlogm)

<k+k{nlogm

)
)
n+m (n+m < nlogm,mlogn)
(nlogm < n+m,mlogn) (k > ko, k1, k2)
(

mlogn (mlogn < n+m,nlogm)
=k + kmin{n + m,nlogm, mlogn} (Definition of min)
< 2k min{n + m,nlogm, mlogn} (n,m>2 = min{...} > 1)

Hence, our overall time complexity is O(min{n + m,nlogm, mlogn}).
(This method works for any finite number of possible choices/strategies.)



20

21

22

23

24

25

26

27

28

29

30

31

Q4. Buggy Code: Exploring Planet Nine

(a) LandingVehicle

public class LandingVehicle {

public String name;
public int fuel;

LandingVehicle () {
}

public void setName(String n){
name = n;

}

public void dispatch(){

public boolean testVehicle(int i){
for (int wheel = 0; wheel < 4; wheel++){
testWheel (wheel) ;
}

return true;

public void testWheel(int w) {
boolean failed = true;
for (int i=10; i>0; i—-){
// Do test.
}
if (failed) return (w / i);

In public void testWheel(int w), we have a for loop that declares and initializes i=10, and
decrements i as long as it is strictly positive. However, as i is declared only within the scope of the for
loop, w / i is not valid.

Furthermore, even if i was declared outside the loop, there is still one issue. If the loop does not
break midway, the final value of i would be 0 after the decrement, and this would result in division by
Zero.

Also, the return type for public void testWheel(int w) is void. It should not return (w / i);.



20

21

22

23

24

25

26

27

28

29

30

(b) Rover

public class Rover {

public static int roverCount = O;
public String pilot;
public Rover(String p){
pilot = p;
+
public Rover() {
roverCount++;
}
public boolean testVehicle(int i){
for (int wheel = 0; wheel < 4; wheel++){
// do test;
}
return true;
}
public static int analyzeRovers(){
for (int i=0; i<roverCount; i++){
if (testVehicle(i)){
return -1;
}
}
return 1;
}

In line 23, within static int analyzeRovers(), we call boolean testVehicle(int). However, as
analyzeRovers() is a static method, it needs a Rover instance to call the instance method testVehicle(int).
This is not the case in line 23.



(c) Probe

public class Probe {
public String name;

public Probe(String n){
name = n;

}

public String checkFuel(){
Rover rover = new Rover();
if (rover.testVehicle()) return "Ok" else return "Nope!";

Firstly, Rover.testVehicle(int) requires an int parameter. Then, we need a semicolon before
else:
if (rover.testVehicle(0)) return "Ok"; else return "Nope!";

(d) NinthPlanet

public class NinthPlanet {
public LandingVehicle[] rovers;

public NinthPlanet (String[] names){
int numRovers = names.length;
rovers = new Rover [numRovers];
for (int i=0; i<numRovers; i++){
rovers[i] .setName (names[i]);

}

public int dispatchRovers() {
for (int i=0; i<rovers.length; i++){
rovers[i] .dispatch();
}

return 17;

On line 7, we initialize rovers = new Rover [numRovers], in the constructor of NinthPlanet. This
creates a new array, of numRover references to Rover objects, each initialized to the null reference.

However, on line 9, we immediately call rovers[i] .setName (names[i]) ; without actually having a
valid Rover object at that slot. This will result in a NullPointerException.

Also, as the class Rover is not a subclass of LandingVehicle, rovers = new Rover [numRovers];
will result in a compilation error.



Q5. Linear Data Structures

(a) splitIntoTwo(a,b,c)

1 void splitIntoTwo(LinkList a, LinkList b, LinkList c) {

2 int sizeO0fB = (a.num() + 1) / 2;

3 for (int i = 0; 1 < sizeOfB; i++) {
4 b.append(a.peekHead());

5 a.deleteHead();

6 }

7 while (a.num() > 0) {

8 c.append(a.peekHead()) ;

9 a.deleteHead();

10 }

11 }

(b) Single Pointer to head

Our goal is to implement a circular doubly linked list in this problem, which is simply a doubly linked
list where the first and last nodes in the linked list are linked by pointers. This will then allow us to
implement append(i) and deleteTail() without the presence of a head pointer.

e prepend (i)
Assume that the node to be inserted is node
— Linked list is empty: node.next is set to node, node.prev is set to node, head is set to node
— Linked list is not empty: node.next is set to head.next, node.prev is set to head.prev,

head.prev.next is set to node, head.prev is set to node, head is set to node

e append (i)
Assume that the node to be inserted is node
— Linked list is empty: node.next is set to node, node.prev is set to node, head is set to node
— Linked list is not empty: node.next is set to head, node.prev is set to head.prev, head.prev.next
is set to node, head.prev is set to node

e deleteHead ()

— Linked list is empty: operation fails

— Linked list has size 1: head is set to null

— Linked list has size > 1: head.prev.next is set to head.next, head.next.prev is set to
head.prev, head is set to head.next

e deleteTail()

— Linked list is empty: operation fails
— Linked list has size 1: head is set to null

— Linked list has size > 1: head.prev.prev.next is set to head, head.prev is set to head.prev.prev



