
 - 1 of 12 -

NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING

Midterm (30%)

AY2019/20 Semester 2

CS2040 – Data Structures and Algorithms

 7 March 2020 Time allowed: 90 minutes

INSTRUCTIONS TO CANDIDATES

1. Do NOT open the question paper until you are told to do so.

2. This question paper contains TWO (2) sections with sub-questions. Each section has a
different length and different number of sub-questions. It comprises Ten (10) printed
pages, including this page.

3. Answer all questions in this paper itself. You can use either pen or pencil. Write legibly!

4. This is an Open Book Quiz. You can check the lecture notes, tutorial files, problem set
files, CP3 book, or any other books that you think will be useful. But remember that the
more time that you spend flipping through your files implies that you have less time to
actually answer the questions.

5. When this Quiz starts, please immediately write your Matriculation Number and
Tutorial Group (if you don’t know your tutorial group, write your TA name and time
slot).

6. The total marks for this paper is 100.

STUDENT NUMBER:

For examiners’ use only

Question Max Marks

Q1-4 12

Q5 35

Q6 35

Q7 18

Total 100

A

TUTORIAL GROUP

 CS2040 Midterm (AY2019/20 Semester 2)

 - 2 of 12 -

Section A – Analysis (12 Marks)

Prove (the statement is correct) or disprove (the statement is wrong) the following
statements below. If you want to prove it, provide the proof or at least a convincing
argument. If you want to disprove it, provide at least one counter example. 3 marks per
each statement below (1 mark for circling true or false, 2 marks for explanation):

1. The tightest time complexity of the following code fragment is .
[true/false]

 for (int i=1;i <= n; i=i*8) {

 System.out.println(“outer loop”);

 for (int j=1; j <= i; j=j*2) {

 System.out.println(“Inner loop”);

 }

 }

 False.
The outer loop variable i increase by a multiple of 8 each iteration and stop when it
reaches n. Thus the values of i is as follows 1,8,16,24…n 

 The inner loop variable j increase by a multiple of 2 each iteration and stop when it
reaches i. Since total number of times the entire fragment is executed is the number of
times the inner loop is executed, this can be represented by the sum

Answers that did not sufficiently argue for a time complexity < O(n) (eg. arguing that since the
outside loop is O(log n), the time complexity must therefore be < O(n); see Tutorial 1 Q2d for a
counterexample) get 1 mark for explanation.

2. Using a basic linked list we can only insert and remove from the front in O(1) time.

However using a tailed linked list we can insert and remove from both the front and
back in O(1) time.
[true/false]

 False.
 We cannot remove from the back in O(1) time, because we need a reference to the 2nd
 last node to remove the last node, and we can only point to that node by moving from
 the head in O(n) time.

 CS2040 Midterm (AY2019/20 Semester 2)

 - 3 of 12 -

3. If separate chaining is used as the collision resolution technique for a hashtable, and
load factor cut off is set at 10. This means that whenever the chain in any row exceeds
length 10 we will rehash everything into a bigger hashtable.
[true/false]

 False.
 Load factor 10 means that if the number of entries/size of hashtable is 10 then we will

resize the hashtable. We can have a hashtable of size e.g 17 and have all 10 insertions
to be to a particular row so the chain in that row will be 10 but the load factor is only
10/17 < 1.

 Full marks are given for correctly identifying the relation of load factor as the average length of

a chain, rather than a maximum length. Directly quoting the meaning of “load factor”, without
mapping it to what it means in terms of separate chaining would get reduced marks.

4. For insertion sort, we need to perform a linear scan from the back of the sorted portion

to find the correct position to insert each value in the unsorted portion of the array.
This causes insertion sort to be O(). We can improve this to O() by
performing a binary search to find the insertion point instead.
[true/false]

 False.
 Even if we can find the insertion point in O(logN) time using binary search where N is

the current size of the sorted region, we still need to shift all values to its right to
introduce the gap for the insertion, thus negating the speedup brought about by the
binary search.

Answers that attempted to argue that the time complexity was < O(n2) eg. by saying the array
was already sorted were not accepted, as we are looking for time complexity in the general
case.

Section B – Applications (88 Marks)

Write in pseudo-code. Any algorithm/data structure/data structure operation not taught in
CS2040 must be described, there must be no black boxes. Some partial marks will be
awarded for correct answers not meeting the time complexity required.

 CS2040 Midterm (AY2019/20 Semester 2)

 - 4 of 12 -

5. Genome analysis [35 marks]

Given a gene represented as a basic linked list (as defined in the lecture notes) of
characters from the set {‘A’, ‘C’, ‘G’, ‘T’}, you are to implement 2 common operations in
genome analysis as follows:

a.) Gene Translocation – given 2 genes and of length and respectively, where
 , , swap the portion of from index to with the portion of from index to
 , where and .

E.g = ACCGTC , = AGGTCCCT, =2 and =4, translocation will result in

 = CCCTGTC, = AGGTACC

Implement gene translocation in time . [18 marks]

prev = K.getNodeAtIndex(i-1) O(|K|)

cur = K.getNodeAtIndex(i) O(|K|)

prev’ = L.getNodeAtIndex(j-1)  O(|L|)

cur’ = L.getNodeAtIndex(j)  O(|L|)

tail = L.getNodeAtIndex(|L|-1)  O(|L|)

prev’.next = K.head

K.head = cur’

prev.next = null

tail.next = cur

Total time take is O(2*|K|)+O(3*|L|) = O(|K|+|L|)

Minor mistakes (eg. off by one, abbreviated as “OB1” as grading remarks) get -1 mark.
Major mistakes (eg. wrong time complexity for a section of code, incorrect iteration code) get -2
marks.
For grading remarks, the terms Ka, Kb, La, and Lb may have been used in your script, when attempting
to illustrate the final results of your answer. Ka refers to the section of gene K from K0 to Ki, while Kb
refers to the section of gene K from Ki+1 to K|K|-1. Similarly, La refers to the section of gene L from L0
to Lj-1, while Lb refers to the section of gene L from Lj to L|L|-1. If there was an ‘r’ before it, it means
that the contents were reversed eg. rKa refers to the section from Ki to K0, in that order.

b.) Longest Common Suffix Length – given 2 genes and of length and
respectively, where , , return the length of the longest common suffix of the 2
genes (0 if there is no common suffix). The suffix of a gene refers to the part of a gene from

 CS2040 Midterm (AY2019/20 Semester 2)

 - 5 of 12 -

some index () to the end of the gene. The longest common
suffix is the longest suffix of and that match each other.

E.g = ACCGTC, = AGGTCGTC, the longest common suffix is as underlined and of length 4.

Implement longest common suffix length in time . You cannot use any
additional data structures (no array, no linked list, no stack, no queue etc …) to help you.
You can modify the and if necessary. [17 marks]

Let cur = K.head, cur’ = L.head

If (|K| < |L|)

 cur’ = L.getNodeAtIndex(|L|-|K|)

else if (|K| > |L|)

 cur = K.getNodeAtIndex(|K|-|L|)

let c be the length of the longest common suffix which is initialized to 0

while (cur != null)

if (cur.character == cur’.character)

 c += 1

else if (cur.character != cur’.character && cur.next != null)

 c = 0  reset c as current longest common substring is not a suffix

cur = cur.next

cur’ = cur’.next

return c

Since you will go through L and K once total time taken is O(|K|+|L|)
--
An alternative answer is to reverse the K and L and find the longest common prefix instead.

prev = K.head, cur = prev.next, next = cur.next, cur.next = prev

while next != null

prev = cur, cur = next, next = next.next

cur.next = prev

K.head = cur

Do the same for L as above

cur = K.head, cur’ = L.head, c = 0

while cur != null && cur.character == cur’.character

c += 1

cur = cur.next

cur’ = cur’.next

return c

Total time to reverse K is O(|K|), total time to reverse L is O(|L|). Total time to go through
both reversed list to find longest common prefix is O(Min(|K|,|L|)). In total it is
O(|K|)+O(|L|)+O(Min(|K|,|L|)) = O(|K|+|L|)

Answers that used additional data structures were capped at 6 marks, including attempting to
modify the provided basic linked lists into tailed doubly linked lists.

 CS2040 Midterm (AY2019/20 Semester 2)

 - 6 of 12 -

Answers that were not attempting to find the longest common suffix (eg. checking for longest
common substring, checking for longest prefix of K as a subsequence of L etc.) were also capped at 6
marks.

Answers that used Strings were capped at 9 marks, because while String is not explicitly a data
structure, it is in effect the same as an array of characters.

O(Max(|L|,|K|)^2) solution -> 9 marks

Minor mistakes -2 marks
Major mistakes like get suffix finding wrong -5 marks

6. Mountain Peaks [35 marks]

a) John is creating a game where a player has to climb a series of mountain peaks of
different heights which can be from to meters above sea level, where
 . In order to generate the peaks, John has created an array of
randomly generated positive integers between 0 and . John then starts going through
 from the 1st to the last integer and accumulate the numbers by multiplying them.
Consider each multiplication as a step, at step the current accumulated total will be
the height of the peak. If , will be set to . The height of the first
peak is set to .
Once he reaches the last integer he will start from the 1st integer again and repeat the
process ad infinitum.
For e.g if and , the first heights will be as follows:

 , , , ,

In fact, the first 10 peaks generated will be 3,3,6,8,8,6,8,8,6,8 ….
John soon realize that the sequence of heights would start repeating after a while. Let
the repeated subsequence be (6,8,8 in the example above). Your job is to come up
with an algorithm to return one integer that is in (any integer in will do, so 6 or 8 in
the example above) in time given the array of random integers. [18
marks]

 i.) State the data structure(s) you will use to help you (N.A if no DS required)

 Use a hashset H which stores a key which is a pair of value (c,i) where c is the current

 height generated and i is the current index in A which generates c.

 ii.) Give the algorithm

 H.insert((A[0],0))

 Let c = A[0], i = 0

 while (true)

 i=(i+1)%50

 c=c*A[i]%M

 if !H.contains((c,i))

 CS2040 Midterm (AY2019/20 Semester 2)

 - 7 of 12 -

 H.insert((c,i))

 else // c is part of the repeating subsequence since we arrive

 // at c at the same index i in A so everything repeats after that

 break

 return c

There are at most O(M*50) values hashed before a number in the repeated
subsequence repeats. Thus total time taken is O(50*M) = O(M)

 Totally wrong/incomplete solution -> 1 mark
 Correct O(M^2) solution -> 11 marks

 Correct O(M^3) solution -> 5 marks

Answers which return the 1st peak repeated -> 6 marks. From the e.g given in the
question this is already not correct, as peaks outside of R can also be repeated.

 The following answers or variations get 8 to 10 marks:

Answers which return highest frequency peaks among the 1st |A| or M generated
peaks (more peaks generated higher marks as more likely to have R repeated more
times).
However this is still not correct solution since |R| can be huge and very few or even
none of the peaks repeat within R itself, or there can be other peaks outside of |R|
which also have the highest frequency.
E.g A={3,1,2},
 and M= 1000. 3 is most frequently generated among others but not in R.

Answers which return the 1st peak with height > M (from the multiplication before
mod) or the first repeated peak with height > M
Again not correct solution
E.g
A={970,448,113,820,936,980,219,469,470,470,769,327,644,602,211,480,5,926,420,983,979,906,605,535
,425,136,408,504,953,57,385,323,471,802,756,849,942,201,760,967,495,501,238,406,208,505,897,962,3
4,481,} and M=1003

123 is one of the heights generated from multiplication of the 1st 11 integers thus > M and is repeated
2x but it is not found in R.

Answers which return the 50th peak or the 1st peak after the 50th > M
50th peak may not be in R yet, neither is it necessarily true that the 1st peak after 50th >
M to be in R.
E.g

A={7,11,13,1,2,}, and
M=1000

2 at peak 53 is actually 2*7*11*13 = 2002 = 2 which is 1st peak after 50th peak > M but 2 is not in R

Those who do not specify how many peaks generated in their solution will be treated
as if they have generated M^3 peaks.

 CS2040 Midterm (AY2019/20 Semester 2)

 - 8 of 12 -

[*This may be a difficult sub-question]
b) After helping John with his problem in a), he now returns to you with another problem.

He has included the ability for the player to rappel from a peak to another peak if
height of height of and all peaks in between and are shorter than and .
John has now stored the 1st integers () out of the sequence from a) in an
array . He wants you to find out what is the maximum number of peaks between a
pair of and among all possible pairs of and in where the player can rappel
from to . Your algorithm should run in time or better. [17 marks]

E.g if B = {5,11,10,3,12,7}, the pair X=12 and Y=11 has the maximum number of peaks in-
between them, i.e 2, which should be output by your program. You will get the same
result if 11 and 12 were swapped i.e B’ = {5,12,10,3,11,7}.

 i.) State the data structure(s) you will use to help you (N.A if no DS required)

 Use a stack S which stores a pair of values (h,m) for a peak v where h is B[i] for the
current value of i, and m is # of peaks to the left of v which has height < h before the
1st peak with height >= h

 ii.) Give the algorithm

int maxM = -1

S.push((B[0],0))

for (int i=1; i < N; i++)

 let v = (B[i],0)

 if (v.h < S.peek().h)

 S.push(v)

 else

 while (!S.empty() && S.peek().h < v.h)

 v.m = v.m+S.pop().m+1 // +1 to include peak popped in m

 if (S.empty())

 v.m -= 1 // don’t include last peak in stack into calculation of m

 S.push(v)

while (!S.empty) // important step to get the best m

maxM = Math.max(maxM,S.peek().m)

S.pop()

return maxM

Each value in B is pushed and popped from the stack at most once, and each push
and pop operation is O(1) thus total time taken is O(N).

 CS2040 Midterm (AY2019/20 Semester 2)

 - 9 of 12 -

Totally wrong/incomplete solution -> 1 mark

O(N^2) Solution -> 9 marks
O(N^3) Solution -> 7 marks

Find the 2 largest peak and return the number of peaks between them -> 4 marks

Algorithms which uses the largest peak as one of the X,Y peaks and vary the other
peak to find the maximum peak counts among those X,Y peaks -> 5 to 7 marks

Do scanning from front to back to find best X,Y and number of peaks between but
forget to scan back to front or any stack based equivalent of this solution -> 10
marks

Stack based algorithms which does not keep a peak count for each peak in the stack
but instead uses a global peak count (can easily overcount) -> 6 to 8 marks

Almost correct stack based algorithms with minor errors e.g forget to pop everything
left in stack after going through B to find the maximum number of peaks -> 13 marks

 CS2040 Midterm (AY2019/20 Semester 2)

 - 10 of 12 -

7. Scramble [18 marks]

You have been invited to a game show “Scramble”. In this game show, you will be
presented with a sequence of non-repeating integers sorted in increasing
order. Then immediately, the game show host will press a “scramble” button which as the
name suggest will scramble the sequence so that the integers will no longer be in sorted
order. Let the scrambled sequence be .

Now you will be given an integer which is guaranteed to be in and not the smallest
value, and you are supposed to pick out (in any order) including itself the 1st largest
integers , where . If there are less than integers then pick out all integers
 . Let the set of such integers be .

For e.g if = {1,3,7,31,51} and = 31, = 3 then = {3,7,31}.
 if we change = 5, then = {1,3,7,31}

The game will proceed in rounds. For each round you will pick out 2 integers and
from . Without loss of generality assume . Once they are picked, they will be
placed in their position and in the original sorted sequence , and all integers
where will also be placed in the positions between and although they will
also be scrambled and each integer will also be at most positions
away from its sorted position. You can now do two things in the order listed below before
the start of the next round

1. Pick out integers to be included in .
 An incorrectly picked integer will result in failure.
 You can also choose not to pick any integers at all for the round.
2. Remove all integers from to OR keep all integers from to and remove all

other integers. The remaining integers are sorted (forming a new) then scrambled
to form a new for the next round.

 Removed integers will no longer be available. So if any required integer is removed
 before it is included in , the game will end in failure.

 e.g of the game play:
 If we start with = {3,1,13,7,35,21,89,77,97,100,99} and = 7, = 2
 for round 1 step 1, if we pick B=7, C=89 then we can have
 = {3,1,7,13,35,21,77,89,97,100,99} where integers between 7 and 89 is placed in the
 indices between 7 and 89 and they are again scrambled. Assume we don’t pick any
integer
 to be in for this round.
 For step 2, If we keep everything from 7 to 89 we will scramble those values and
 have = {13,7,35,21,89,77} for round 2. If we throw everything from 7 to 89 away, we
 scramble the remaining integers and can have = {3,1,99,97,100} for round 2.

If you can pick out all required integers in at most rounds, then you will win

1,000,000 dollars!
For each round there is a time limit and since you can only do computation mentally, an

additional restriction is that you can only take time in total to play the game and use
at most additional space.

Now given the afore mentioned restrictions, come up with an algorithm that will solve
the problem in at most rounds and take in total time and additional
space.

 CS2040 Midterm (AY2019/20 Semester 2)

 - 11 of 12 -

Non-viable solutions include memorizing the original sequence (it is too long), and using
radix sort since it is too mentally challenging to perform (also requires too much space).

The idea is the use a modified form of QuickSort/QuickSelect to find the 1st largest integers

0.) Let count = X
1.) Scan through and get the smallest value M. O(N) time
2.) Pick B = M and C = A and let the number be placed in their positions (as well as all values
in between which are still scrambled)
3.) Scan from B to C and count the number of items X’ in that range.
 If X’ <= count, select everything value from B to C to be in A’. End of game
 If X’ > count,
 i.) don’t pick any value to be in A’  You’re not sure which values should be in
 ii.) keep everything from B to C for round 2 everything in A’ must be found

somewhere from B to C, so keep that
range of values throw away everything
else. Time taken is at most O(N)

For subsequent rounds do the following
4.) Pick C = largest number in  again can find this by scanning through . O(| |)
 Pick B = value in middle of . If this value is the largest number in (i.e C) simply pick
 the one to the left or right  find the middle position by scanning through . O(| |)
5.) Scan from B to C to count number of items X’ in that range.
 If X’ <= count,
 i.) count = X-X’
 ii.) select every value from B to C to be in A’  O(| |) time required.
 iii.) throw away everything from B to C keep the rest.

 If X’ > count, keep everything from B to C throw away the rest.
 6.) if count == 0 then end of game, else repeat 4.)

 Analysis:
 In each round picking out B, C and picking the integers to include in A’ only takes time linear to the
 size of of the current round.
 Now for each round after the 1st round, you are always removing at least 20% of the value
 since we pick the C to be the largest value and B to the value in the middle index which in
 the worst case is the integer that is either 0.3*| | to the left or right of the middle index.
 Regardless we will throw away at least 0.2*| | of the values
 So the size of | | is represented by the following sequence for each round

 We will stop when we have 2 values left. The number of round is then reflected in the power of
4/5.
 We stop when

 

 

 

 

 

 

The total time taken is then sum of the same sequence and we have

 CS2040 Midterm (AY2019/20 Semester 2)

 - 12 of 12 -

A lot of answers do not say what is the B and C to be picked for the round. That is crucial to
picking all X largest integers <= A in O(lgN) round.

Some completely wrong solution -> 1 mark

Correct solution requiring O(N) rounds and fulfilling requirements -> 9 marks

Correct solution using sorting or correct solution using more than O(1) space-> 3 marks
(fails requirement that only O(N) time/O(1) space in total. There is no array of the input, the
sequence is simply presented to you so you have to use O(N) already to remember the
entire sequence.)

Incomplete/incorrect solution that have the idea of picking C=A and B=smallest element in
1st round, but then
1. C and B not specified correctly for subsequent round
2. Did not specify how to pick the integers to be included in A'
3. Unclear or wrong in which is the part of to keep for the next round
Any combination of the above
-> 4 to 6 marks

Minor errors to correct solution -> -2 marks per minor error.

== END OF PAPER ==

