
 - 1 of 16 -

NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING
Midterm (20%)

AY2019/20 Semester 1

CS2040 – Data Structures and Algorithms

 5 October 2019 Time allowed: 90 minutes

INSTRUCTIONS TO CANDIDATES
1. Do NOT open the question paper until you are told to do so.

2. This question paper contains TWO (2) sections with sub-questions. Each section has a
different length and different number of sub-questions. It comprises Thirteen (13) printed
pages, including this page.

3. Answer all questions in this paper itself. You can use either pen or pencil. Write legibly!

4. This is an Open Book Quiz. You can check the lecture notes, tutorial files, problem set files,
CP3 book, or any other books that you think will be useful. But remember that the more
time that you spend flipping through your files implies that you have less time to actually
answer the questions.

5. When this Quiz starts, please immediately write your Matriculation Number and Tutorial
Group (if you don’t know your tutorial group, write your TA name and time slot).

6. The total marks for this paper is 100.

STUDENT NUMBER:

For examiners’ use only

Question Max Marks

Q1-4 12

Q5 30

Q6 30

Q7 28

Total 100

A

TUTORIAL GROUP

 CS2040 Midterm (AY2019/20 Semester 1)

 - 2 of 16 -

Section A – Analysis (12 Marks)
Prove (the statement is correct) or disprove (the statement is wrong) the following
statements below. If you want to prove it, provide the proof or at least a convincing
argument. If you want to disprove it, provide at least one counter example. 3 marks per each
statement below (1 mark for circling true or false, 2 marks for explanation):

1. The tightest time complexity of recursion1(𝑵𝑵) of following program is 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁).

 [true/false]
 public static void recursion1(int i) {
 if (i <= 1)
 return;
 else
 for (int j=0; j < i; j++)
 recursion2(j/2);
 }

 public static void recursion2(int i) {
 if (i > 1)
 return;
 else
 recursion1(i);
 }

 Answer: false

For any n > 1, 1st call to recursion1 will go into else clause where the for loop will iterate
n times. Each iteration calls recursion2 and for any i > 1 recursion2 immediately returns
(base case), otherwise it calls recursion1 again however this call to recursion1 will now
immediately return since i <= 1. Thus recursion2 will at most take O(1) time regardless
of value passed in. So in total the time taken is simply O(N) due to the for loop.

2. Given the same input, insertion sort will always have time complexity equal to or worse

than mergesort. [true/false]

 Answer: false

 If input of size N given is already sorted, insert sort will only take O(N) time since or each

iteration of the outer for loop, the inner for loop for insertion sort will only execute once
and determine that value at current index i is already in its correct position.

 However for mergesort regardless of whether input is sorted or not it will still take
O(NlogN) time.

 CS2040 Midterm (AY2019/20 Semester 1)

 - 3 of 16 -

3. If we implement a queue ADT using a circular linked list, only the time complexity for
either enqueue or dequeue operation is 𝑂𝑂(1) time but not both. [true/false]

 Answer: false

 If we maintain a tail reference, then enqueue which is equivalent to inserting to the tail

of the circular linked list can be done in O(1) time as follows

 newNode.next = tail.next
 tail.next = newNode
 tail = tail.next

 dequeue which is equivalent to remove from the head of the circular linked list can also

be done in O(1) time as follows

 tail.next = tail.next.next;

4. Given 2 arrays of size 𝑁𝑁 each that contains unsorted integers that have values between

0 and 2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, we can check whether they contain the same elements in 𝑂𝑂(𝑁𝑁) time by first
performing radix sort on both in 𝑂𝑂(𝑁𝑁) time then simply go from index 0 to 𝑁𝑁-1 to check
if the value at the current index in both array is the same or not. [true/false]

 Answer: false

 Radix sort is 𝑂𝑂(𝑑𝑑𝑑𝑑) where d is the number of digits in the integers to be sorted in this

case size the integers can be up to 2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, the number of digits is 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) and not
bounded by a constant. Thus it will take 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) instead of 𝑂𝑂(𝑁𝑁).

Section B – Applications (88 Marks)

Write in pseudo-code. Any algorithm/data structure/data structure operation not taught in
CS2040 must be described, there must be no black boxes. Some partial marks will be awarded
for correct answers not meeting the time complexity required.

 CS2040 Midterm (AY2019/20 Semester 1)

 - 4 of 16 -

5. Text manipulation [30 marks]

a) After taking CS2040 for half a semester, you have decided to put what you’ve learned to
good use and simulate a rudimentary text editor. To make it simple you only capture input
from the keys ‘0’ to ‘9’, ‘a’ to ‘z’, ‘A’ to ‘Z’, the space key ‘ ’, the enter key ‘\n’ and the
backspace key which is captured as ‘\b’. These inputs are then stored as a string. Given
such a length 𝑁𝑁 input string 𝑨𝑨, give an algorithm and the associated data structure to
display the final text in 𝑂𝑂(𝑁𝑁) time. [18 marks]

E.g: Input string 𝑨𝑨: “This is CSS\b204000\b\b midterm\n”

 Output text: “This is CS2040 midterm\n”

Answer:

1.) Use a stack S to store each character read in from A

2.) For each character c from index 0 to N-1 in A

 If (c != ‘\b’)

 S.push(c)

 else

 if (!S.empty())

 S.pop()

3.) Create a character array B of size S.size() and let i = S.size()-1

4.) while !S.empty()

 B[i--] = S.pop()

5.) Go through B and print out each character.

O(N) algo: 18 marks,
i. each minor errors or lack of details: -2
ii. didn't handle backspace correctly or other major errors: -12

O(N^2) algo: 9 marks
(*Note: Any solution that involves concatenation of characters to build up the final string will result
in O(N^2) time! unless you use StringBuilder)
i. each minor errors or lack of details: -2
ii. didn't handle backspace correctly or other major errors: -6

wrong solution: 0 to 2 marks (depending on how wrong)

 CS2040 Midterm (AY2019/20 Semester 1)

 - 5 of 16 -

b) After you tried out your simulator, you discovered that somehow the backspace key press
has a problem and instead of a backspace it will randomly be replaced by a home key or
end key. Going with the error, you now want to change your algorithm and associated
data structure so that it will output the final text with the inclusion of these random home
and end keys and the exclusion of the backspace key. You can assume home key is ‘\H’
and end key is ‘\E’. Your algorithm should still run in 𝑂𝑂(𝑁𝑁) time. [12 marks]

E.g: Input string 𝑨𝑨: “This is CS2040 \Hmid\Eterm\n”

 Output text: “midThis is CS2040 term\n”

Clarification during midterm: home key brings the cursor all the way to the start of the
text and end key brings it all the way to the end.

Answer:

Idea is to use a tailed linked list like solution to joinstring take home lab.

1.) Create a tailed linked list L that stores strings and let i = 0, let j = 0, and let home = false

2.) while (true)

 If (j == Length of A-1)

 AddString(A,i,j,L,home)  linear in substring length from i to j

 break

 if (A[j] == ‘\H’)

 AddString(A,i,j-1,L,home)  linear in substring length from i to j

 home = true

 i = j+1

 else if (A[j] == ‘\E’)

 AddString(A,i,j-1,L,home)  linear in substring length from i to j

 home = false

 i = j+1

 j++

 3.) Go through L and print out all strings in L  O(N)

 AddString(array A, int i, int j, tailed Linked List L, boolean home)

 1.) if A[j] == “\H” or “\E” // ignore A[j]

 Let S’ = substring of A from index i to j-1  linear in length of S’

 else

 Let S’ = substring of A from index i to j  linear in length of S’

 CS2040 Midterm (AY2019/20 Semester 1)

 - 6 of 16 -

 2.) if (!home)

 add S’ to tail of L  O(1)

 else

 add S’ to head of L  O(1)

Total time complexity is O(N).

O(N) algo: 12 marks
i. each minor errors or lack of details: -2
ii. add to front wrongly when encounter '\H': -6
iii. not able to handle multiple '\H' or '\E': -6
iv. other major errors: -6

O(N^2) algo: 6 marks
 (*Again, concatenation of characters to build up the final string will result in O(N^2) time! unless you
use StringBuilder)
i. each minor error or lack of details: -1
ii. add to front wrongly: -2
iii. not able to handle multiple '\H' or '\E': -3
iv. other major errors: -3

wrong solution: 0 to 2 marks (depending on how wrong)

6. Poison manufacturing facility [30 marks]

A facility manufactures a type of poisonous liquid. It will then bottle those liquid into bottles
that can contain different integer volume 𝑀𝑀 of liquid where 1 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 < 𝑀𝑀 < 10 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙.
Batches of 𝑁𝑁 bottles will be sent on a conveyor belt one after the other to be filled with the
poisonous liquid. The bottle at the front will be processed first while the bottle at the back
will be processed last. The bottle at the front will then be filled with up to 3 litres of liquid or
until the bottle is full whichever is less, and it takes 10 seconds per litre. If the bottle is not
full it will be sent to the back of the conveyer belt to be filled again (assume no time is taken
here). After processing a bottle (whether it is full or not), the next bottle takes 10 seconds to
come in and be positioned correctly. You may assume that at the start the 1st bottle to be
processed is already positioned correctly.

a.) Given an array 𝐴𝐴 of 𝑁𝑁 (𝑁𝑁 > 1) integer values indicating the volume of 𝑁𝑁 bottles to be placed
on the conveyer belt from index 0 to index 𝑁𝑁 − 1 in that order, and 𝐻𝐻 the number of seconds,
give the algorithm and associated data structure that will compute the number of bottles that
are completely full after 𝐻𝐻 seconds. [18 marks]

E.g1: Given 𝐴𝐴 = [1,3,7,1,4] and 𝐻𝐻 = 190, the number of full bottles is 3 after 190 seconds.

E.g2: Given 𝐴𝐴 = [1,3,1,4,7] and 𝐻𝐻 = 190, the number of full bottles is 4 after 190 seconds.

 CS2040 Midterm (AY2019/20 Semester 1)

 - 7 of 16 -

Answer:

Simulate the process using a queue!

1.) Let Q be a queue, fbcount = 0, H’ = H

2.) For i from 0 to N-1

 Q.enqueue(A[i])

3.) while (H’ > 0 && !Q.empty())

 If (H’ < H)

 H’ = H’-10

 let cur = Q.poll()

 H’ = H’-min(30, cur*10)

 cur = cur-3

 if (cur > 0 and H’ > 0)

 Q.enqueue(cur)

 else if (cur < 0 && H’ >= 0)

 fbcount = fbcount+1

4.) Print out fbcount

Correct solution regardless of time complexity: 18 marks
i. each minor error: -2
ii. major error: -9

Only go through input array A once to compute fully filled bottles rather than use a queue or
go through A multiple times until H seconds is up: 6 marks

wrong solution: 0 to 2 marks (depending on how wrong)

[*This is a difficult sub-question]
Suddenly the facility suffers a rupture along the entire length of the pipes carrying the
poisonous liquid. The facility is built around a safety moat filled with chemicals that would
neutralize the poisonous liquid should it escape and flow into the moat, thus containing the
liquid from spreading to the outside world. However, the facility itself is not so lucky.

This facility is a single floor rectangular structure of width 100 meters with strangely no roof
and running along the 2 sides of the facility length-wise are walls of 𝑴𝑴 + 𝟏𝟏 meters high each
where 𝑴𝑴 is an integer. Along the length of the 2 side walls, 𝑵𝑵 walls of integer heights ranging
from 3 meters to 𝑴𝑴 meters are placed at intervals of 10 meters perpendicular to the side
walls to create rooms and since the pipes run through all the rooms, they all start filling with
the poisonous liquid. Once the liquid in a room reaches over the height of either of its room
walls, it will overflow into the adjoining room and so on, until it flows into the moat. You can
assume the moat can contain and neutralize an infinite amount of the liquid. Your task is to

 CS2040 Midterm (AY2019/20 Semester 1)

 - 8 of 16 -

Walls separating
rooms at 10m

6th wall

1st wall

now calculate what is the maximum volume of liquid contained within the facility. For
simplicity sake assume walls are 0 meters thick and ignore all the equipment in the facility.

When the facility contains the maximum volume of liquid, the liquid will fill the facility such
that for all pairs of walls 𝑊𝑊 and 𝑊𝑊’ (assuming without loss of generality that 𝑊𝑊 is to the left
of 𝑊𝑊’) of height ℎ and ℎ’ respectively such that

1. there are no walls taller than min(ℎ,ℎ′) between 𝑊𝑊 and 𝑊𝑊’
2. If ℎ ≤ ℎ′ (𝑊𝑊 is the shorter wall), there are no walls taller than ℎ to the left of 𝑊𝑊
3. If ℎ′ ≤ ℎ (𝑊𝑊’ is the shorter wall), there are no walls taller than ℎ′ to the right of 𝑊𝑊′

then all rooms between 𝑊𝑊 and 𝑊𝑊′ will be submerged up to height min(ℎ,ℎ′).

The input given to you is an array 𝑨𝑨 of the height of the walls separating the rooms starting
from the 1st wall to the 𝑁𝑁𝑡𝑡ℎ wall.

Example top down view of the facility:

100m width

The 2 side walls are height 𝑀𝑀+1 each while the 6 walls have integer height ranging from 3 to 𝑀𝑀.

Example side view of the facility (ignoring the side wall):

The heights of the walls from the 1st to the 6th is 11,13,7,6,8,6 meters respectively.

11m

13m

7m
6m

8m
6m

 CS2040 Midterm (AY2019/20 Semester 1)

 - 9 of 16 -

In the example above, the maximum volume of poisonous liquid contained in the facility can
be shown below based on how the liquid submerges the rooms.

(11*10*100)+(8*30*100)+(6*10*100) = 41,000 m3

Any excess liquid will simply flow into the moat (since there is no roof).

In another example below

the maximum volume of poisonous liquid contained in the facility can be shown as follows

10*10*100+8*10*100+6*10*100+5*10*100+4*10*100 = 33,000 m3

b) Given input array 𝑨𝑨 of the height of the 𝑁𝑁 walls from 1st wall to 𝑁𝑁𝑡𝑡ℎ wall, come up with

an algorithm and appropriate data structure so that the maximum volume of poisonous
liquid that can be contained in the facility can be computed in 𝑂𝑂(𝑁𝑁) time. [12 marks]

Answer using a stack:

1.) Let S be a stack that store integers pairs <X,Y> where X represents the height of a wall,
 and Y represents how many rooms are submerged to a height of X. S will contain walls
 in order of decreasing height from bottom to top of stack.

 2.) Let maxVol be the maximum volume of poisonous liquid contained in the facility and
 is initialized to 0

3.) Go through A for index = 0 to N-1

11m 10m
 8m

6m 5m
4m

11m 10m
 8m

6m 5m
4m

7m
11m

13m

6m
8m

6m

 CS2040 Midterm (AY2019/20 Semester 1)

 - 10 of 16 -

 if (index == 0)
 S.push(<A[0],0>)
 else
 Let X’ = A[index], Let Y’ = 1, Let H = 0
 while (!S.empty() and S.peek().X <= X’)
 H = S.peek().X
 Y’+= S.pop().Y
 If (S.empty())
 maxVol += Y’*10*100*H
 S.push(<X’,0>)
 else
 S.push(<X’,Y’>)

4.) while (!S.empty()) // pop all remaining items in S and add to maxVol
 maxVol += S.peek().X*S.pop().Y*10*100

 5.) Print maxVol

Each wall is at most pushed into the stack once and removed from the stack once. Thus
there are at most O(N) push and pop operations which costs O(1) each. So total time taken
is O(N).

Answer without using a stack (courtesy of Wang Zhi Jian):

First, let’s assume that the heights of all walls are distinct. We will handle the case
where not all heights are distinct later. We make the following claim:

Since one of the above conditions must hold for each wall, we can first find all pools that
satisfy the first condition, and then find all pools satisfying the second condition. Then, we
would have found all the pools that can possibly be formed.

To find all pools satisfying the first condition, we can first start from the leftmost wall, and
consider that to be the left wall enclosing the first pool. Then, we iterate from left to right
to find the next wall higher than the first wall to be the right wall enclosing the first pool.
Then, we can let this wall be the left wall enclosing the second pool, and we repeat this
process.

To find all pools satisfying the second condition, we use a similar procedure. Start from the
rightmost wall and consider that to be the right wall enclosing the first pool. Then, iterate
from right to left to find the next wall higher than the first wall to be the left wall enclosing

Claim 1

Consider any pool of liquid surrounded by two walls on its left and right. Let the heights of the
two walls be A[i] and A[j] respectively. Then, one of the following must hold:

● A[i] < A[j] (the wall on the right is taller than the wall on the left)
● A[i] > A[j] (the wall on the left is taller than the wall on the right)

 CS2040 Midterm (AY2019/20 Semester 1)

 - 11 of 16 -

the first pool. Then, let this wall be the right wall enclosing the second pool, and repeat this
process.

The pseudocode of this algorithm is shown below

This algorithm works if the heights of all walls are distinct. However, in the question, the
heights of all walls may not necessarily be distinct. So, in the question, our conditions
actually look like this:

Notice that now, some pools actually satisfy both conditions instead of just one condition: the pools
surrounded by two walls with the same height on both sides. So, Algorithm 1 may double count
some pools, and we may get an incorrect total volume.

But exactly which pools are actually double counted? We make another observation:

Challenge: Prove it!

Algorithm 1: Computes total volume of all pools, assuming that heights of walls are distinct

Let A[1..N] be the heights of the walls from left to right.

// This function computes the volume of a single pool
function calculate_volume(width, height)
 return width * 10 * height * 100

total_volume = 0 // total volume

// Find all pools satisfying height(right) > height(left)
left_wall_index = 1 // position of left wall for current pool
for i = 2 to N
 if (A[i] > A[left_wall_index])
 total_volume += calculate_volume(i - left_wall_index,
 A[left_wall_index])
 left_wall_index = i

// Find all pools satisfying height(left) > height(right)
right_wall_index = N // position of right wall for current pool
for i = N - 1 to 1
 if (A[i] > A[right_wall_index])
 total_volume += calculate_volume(right_wall_index - i,
 A[right_wall_index])
 right_wall_index = i

print total_volume

Claim 2
Consider any “pool” of liquid surrounded by two walls on its left and right. Let the heights of
the two walls be A[i] and A[j] respectively. Then, at least one of the following must hold:

● A[i] ≤ A[j] (the wall on the right is at least as tall as the wall on the left)
● A[i] ≥ A[j] (the wall on the left is at least as tall as the wall on the right)

Claim 3

Let H be the maximum height over all walls. All pools where both walls surrounding the pool are of
height H will be double counted.

 CS2040 Midterm (AY2019/20 Semester 1)

 - 12 of 16 -

So, we can modify the algorithm to ignore all pools where both walls surrounding the pool
are of height H in the second loop above, when iterating through the walls from right to left.
The modified pseudocode is shown below (modifications to Algorithm 1 shown in blue):

Algorithm 2: (Solution for 6b.) Computes total volume of all pools

Let A[1..N] be the heights of the walls from left to right.

function calculate_volume(width, height)
 return width * 10 * height * 100

total_volume = 0 // total volume

// Find max height over all walls
max_height = 0
for i = 1 to N
 if (A[i] > max_height)
 max_height = A[i]

// Find all pools satisfying height(right) > height(left)
left_wall_index = 1 // position of left wall for current pool
for i = 2 to N
 if (A[i] >= A[left_wall_index])
 total_volume += calculate_volume(i - left_wall_index,
 A[left_wall_index])
 left_wall_index = i

// Find all pools satisfying height(left) > height(right)
right_wall_index = N // position of right wall for current pool
for i = N - 1 to 1
 if (A[i] >= A[right_wall_index])
 if (A[i] > A[right_wall_index] || (A[i] == A[right_wall_index] &&
 A[i] != max_height))
 total_volume += calculate_volume(right_wall_index - i,
 A[right_wall_index])
 right_wall_index = i
print total_volume

Time: O(N) and Space is O(1)

O(N) algo: 12 marks
i. each minor error, lack of details: -2

O(N^2) algo: 5 marks
i. each minor error, lack of details: -2

O(N^3) algo: 3 marks (algo that mimics the description, for each pair of wall, scan through A to
determine if they fit the requirement if they do compute volume of liquid in between and add to
total volume)
i. each minor error, lack of details: -1

Any algo that only handle decreasing wall heights and/or increasing wall heights: 2 marks
Wrong solution: 0 to 1 marks (depending on how wrong)

 CS2040 Midterm (AY2019/20 Semester 1)

 - 13 of 16 -

7. Laser Defense [28 marks]

a) Company W houses some of the most advanced military weapons in the world. Each floor

of the company is laid out in an 𝑁𝑁 by 𝑀𝑀 grid (𝑁𝑁 is the # of rows and 𝑀𝑀 is the # of columns),
where the top left cell is at row 0, column 0, i.e (0,0) and the bottom right cell is at row
𝑁𝑁 − 1 and column 𝑀𝑀 − 1, i.e (𝑁𝑁 − 1,𝑀𝑀− 1). In order to protect their assets, 𝐾𝐾 (𝑘𝑘 ≤
min (𝑀𝑀,𝑁𝑁) number of laser defenses are installed on every floor. Each laser defenses’
position is given by its row and column coordinate on the grid. Now a laser defense at
coordinate (X,Y) will have a laser barrier shooting out all the way along both row X and
column Y. Due to this feature of the laser defense, the following non-conflict property
must hold:
No laser defense can be placed on the same row or column as another laser defense
otherwise their laser barrier will destroy each other.

E.g: Given the 2 following grid and laser defenses, Fig 1 is an invalid configuration while
 Fig 2 is a valid configuration.

(1,0) (1,2)

 (2,1)

 (4,3)

 Fig1: 5x4 grid, with laser Fig2: 6x4 grid, with laser

 defenses as indicated defenses as indicated
 by their coordinates. by their coordinates.
 Lasers at (1,0) & (1,2) No lasers violate the
 violates the non-conflict non-conflict property
 property here.

You may assume there is a coordinate class with attributes 𝑥𝑥 and 𝑦𝑦 representing the row
and column index respectively.

Now given 𝑁𝑁, 𝑀𝑀,𝐾𝐾 and an array 𝐴𝐴 of 𝐾𝐾 coordinates representing the position of the 𝐾𝐾
lasers, give an algorithm for the method Valid(𝑵𝑵,𝑴𝑴,𝑲𝑲,𝑨𝑨) that returns true if the 𝐾𝐾 lasers
are placed in a non-conflicting configuration otherwise return false. Valid(𝑵𝑵,𝑴𝑴,𝑲𝑲,𝑨𝑨)
must run in 𝑂𝑂(𝐾𝐾) time. [10 marks]

(1,0)

 (3,1)

 (4,3)

 CS2040 Midterm (AY2019/20 Semester 1)

 - 14 of 16 -

Answer:

Non-conflict property means no row value and column value can be repeated for the set
of laser defense positions.

boolean Valid(N,M,K,A)

1.) Let H and H’ be two hash sets. H stores row values and H’ stores column values
2.) For all coordinates (X,Y) in A

 if (H.get(X) == null)
 H.put(X)
 else
 return false
 if (H’.get(Y) == null)
 H’.put(Y)
 else
 return false
 3.) return true

O(K) algo: Using hashmap or equivalent: 10 marks
O(N+M) algo: Use a size N array and size M array to detect conflicting lasers: 7 marks
O(K*(M+N)) algo: For each laser scan entire row and column to check if there is another laser: 5
marks
O(K^2) algo: 5 marks

Each minor error, lack of detail: -2

b) [*This may be a difficult sub-question]

Company W has changed their laser defense so that the laser defenses are not activated
from the start and also the non-conflict property is no longer needed and now the number
of laser defenses 𝐾𝐾 is such that 4 <= 𝐾𝐾 <= 𝑚𝑚𝑚𝑚𝑚𝑚(𝑁𝑁,𝑀𝑀). Sensors are placed on the
floor which will detect movement, so that whenever any intruder has moved a certain
distance within a floor the laser defenses will be activated. In this version, if 4 activated
laser defenses are placed in a rectangular configuration and an intruder is within that
rectangular region, the 4 laser defenses will erect a rectangular laser barrier to trap the
intruder. An intruder may be within the rectangular region of many such laser
configurations, but only the 4 laser defenses which forms the smallest rectangular region
trapping the intruder will be activated (if there are many such smallest configurations,
one of them will randomly be activated).

Given 4 laser defenses in some rectangular configuration, an intruder at (X1,Y1) is
considered within their rectangular region if

X coordinate of a leftmost laser < X1 < X coordinate of a rightmost laser
Y coordinate of a topmost laser < Y1 < Y coordinate of a bottommost laser

 CS2040 Midterm (AY2019/20 Semester 1)

 - 15 of 16 -

E.g: In the 2 following grid, where # marks the position of the intruder, the bold and
underlined laser configuration will be activated, and its rectangular region are the shaded
cells.

(1,0) (1,2) (1,3)

 #

(3,0) (3,2) (3,3)

Now given 𝑁𝑁, 𝑀𝑀,𝐾𝐾,𝐴𝐴 as before and the coordinates 𝑃𝑃 of an intruder, give the best
algorithm you can think of for the method SmallestArea(𝑵𝑵,𝑴𝑴,𝑲𝑲,𝑨𝑨, 𝑷𝑷) which will return
the area of the activated rectangular laser configuration that will trap the intruder. If
there is no laser configuration that can trap the intruder return -1. Analysis the time
complexity of your algorithm. [18 marks]

Answer:
O(K^2) time algorithm:

Key idea: For lasers in a rectangular configuration, if we have 2 of the laser positions that
are in a diagonal, we can immediately get the positions of the 2 other lasers in the other
diagonal.

SmallestArea(N,M,K,A,P)

1.) For each coordinate in A hash to a hash set H.
2.) let area = 0 where it represents area of activated laser configuration
3.) for i = 0 to K-2

 for j = i+1 to K-1
 let lp = A[i] and lp’ = A[j] // get every pair of laser defense
 if (lp.x != lp’.x && lp.y != lp’.y) // lp and lp’ can form a diagonal
 let minX = min(lp.x,lp’.x)
 let maxX = max(lp.x,lp’.x)
 let minY = min(lp.y,lp’.y)
 let maxY = max(lp.y,lp’.y)
 let lp1 = (lp.x, lp’.y)
 let lp1’ = (lp’.x, lp.y)
 if (H.get(lp1) != null and H.get(lp1’) != null) // the other diagonal exists
 if (minX < p.x < maxX and minY < p.y < maxY) // intruder within rect. region
 if (area == 0 || area > (maxX-minX-1)*(maxY-minY-1))
 area = (maxX-minX-1)*(maxY-minY-1)

4.) if (area == 0) return -1 else return area

(1,0) (1,1) (1,3) (1,4)

 #

 (4,1) (4,3)

(5,0) (5,4)

 CS2040 Midterm (AY2019/20 Semester 1)

 - 16 of 16 -

O(K^2) algo: 18 marks
O(K^3)/O(KNM) algo: 9 marks
O(K^4): Consider all possible combination of 4 lasers: 5 marks

Only consider square regions: 3 marks

Each minor errors/missing details: -2

== END OF PAPER ==

