
National University of Singapore

School of Computing

CS2040 - Data Structures and Algorithms

Midterm Test @ SR2

(Thu, 12 Jul 2018, S4 AY2017/18, 100m)

INSTRUCTIONS TO CANDIDATES:

1. Do NOT open this assessment paper until you are told to do so.

2. This assessment paper contains SIX (6) sections.

It comprises ELEVEN (11) printed pages, including this page.

3. This is an Open Book Assessment.

4. Answer ALL questions within the boxed space in this booklet.

You can use either pen or pencil. Just make sure that you write legibly!

5. Important tips: Pace yourself! Do not spend too much time on one (hard) question.

Read all the questions first! Some questions might be easier than they appear.

6. You can use pseudo-code in your answer but beware of penalty marks for ambiguous answer.

You can use standard, non-modified algorithm discussed in class by just mentioning its name.

7. Write your Student Number in the box below:

A 0 1

Section Maximum Marks Student Marks Remarks

A 10

B 15

C 15

D 15

E 5

F 40

Total 100

1

CS2040

A Worst Case Time Complexity Analysis (10 marks)

Write down the tightest1 worst case time complexity of the various data structure operations or

algorithms below.

The operations (algorithms) referred below are the unmodified version, as per discussion in

class, e.g. as currently explained in VisuAlgo or as currently implemented in Java API (version 8).

Unless otherwise mentioned, there are currently 𝑛 elements in the data structure. A is a Java ArrayList

currently with 𝑛 elements. L is a Java LinkedList currently with 𝑛 elements, PQ is a Java PriorityQueue

currently with 𝑛 elements. v is a 32-bit Integer.

No Operations Time Complexities

1 A.remove(0); 𝑂()

2 for (int i = 0; i < n; i++) A.remove(0); 𝑂()

3 for (int i = 0; i < n; i++) A.remove(n-1-i); 𝑂()

4 A.remove(v) // but v does not exists in A 𝑂()

5 A.add(v) // and v does not exists before in A 𝑂()

6 for (int i = 0; i < n; i++) L.removeFirst(); 𝑂()

7 for (int i = 0; i < n; i++) L.removeLast(); 𝑂()

8 for (int i = 1; i <= n; i *= 2) PQ.insert(i); 𝑂()

9 for (int i = 0; i < n; i++) PQ.poll(); 𝑂()

10 PQ.contains(v) // v exists in PQ 𝑂()

1What we meant by tightest worst case time complexity is as follows: If an operation of the stipulated data struc-
ture/an algorithm needs at best 𝑂(𝑛3) if given the worst possible input but you answer higher time complexities than
that, e.g. 𝑂(𝑛4) – which technically also upperbounds 𝑂(𝑛3), you will get wrong answer for this question.

2

Section A Marks =

CS2040

B Analysis (15 marks)

Prove (the statement is correct) or disprove (the statement is wrong) the statements below.

1. Java Collections.sort can be made to run slower than 𝑂(𝑛 log 𝑛) (and more than 𝑂(𝑛2)) by

using it to sort a collection of 𝑛 specific items.

2. We can compute the number of inversions (number of Bubble Sort swaps) of an array A with 𝑛

integers faster than 𝑂(𝑛2).

3. Suppose that you have two Linked Lists SLLa and SLLb. SLLa/SLLb contains 𝑛/𝑚 unsorted

alphabets [‘A’..‘Z’], respectively (100 < 𝑛,𝑚 < 10 000;𝑛 ̸= 𝑚). As we cannot get an element

at index 𝑖 in 𝑂(1) if we use Linked List, to check whether an alphabet is inside both SLLa and

SLLb, we need an 𝑂(𝑛×𝑚) algorithm that is roughly like this:

for (Character a : SLLa) for (Character b : SLLb) if (a == b) return true;

return false;

4. A Stack/Queue is a Last-In-First-Out/First-In-First-Out data structure, respectively. Thus,

there is no way we can insert a sequence of 𝑛 (𝑛 > 1) integers into a Stack and (the same

sequence of 𝑛 integers into) a Queue and when we peek the top/front of the Stack/Queue,

respectively, we see the same integer.

5. Suppose that we need to use a special kind of ADT Priority Queue where all enqueue (Insert(v))

operations will be performed first before all subsequent dequeue (ExtractMax()) operations (from

highest priority to lowest priority). For this kind of ADT PQ, we can use another data structure

and/or algorithm to achieve similar time complexities as if we use Binary (Max) Heap.

3

Section B Marks =

CS2040

C Alternative Implementation (15 marks)

In class, we have discussed that (Single) Linked List is likely one of the best possible implementation

of a general ADT Queue. However, for some ADT Queue applications, we actually know what is the

maximum size of the queue so we can use an array of that maximum size with two pointers (front

and back) that can wrap-around that has been discussed in VisuAlgo e-Lecture slides (see Figure 1).

Figure 1: The Slides.

Now, what are the (positive, neutral, negative) implications of such implementation for

an ADT Queue with known maximum size? One such implication has been listed below. Your

job is to list down at least 5 (can be more...) other logical statements of this implementation. Your

answer will be graded based on the soundness and the quality of the statements (3 marks for each

valid statement; -1 mark for random/irrelevant statement; min 0 mark and max 15 marks).

1. The enqueue operation remains 𝑂(1).
2.

3.

4.

5.

6.

4

Section C Marks =

CS2040

D Create Test Cases (15 marks)

Create Test Cases for each scenario below. Each valid test case worth 5 marks.

1. Supply an input array X of N = 7 distinct integers ∈ [1..7] so that the Optimized Bubble Sort

(as currently implemented in VisuAlgo sorting page by 03 July 2018, during the discussion in

Lecture 2a) requires exactly 10 (Bubble Sort) swaps to make X sorted in increasing order.

2. Supply an input array X of N = 15 integers ∈ [1..15] so that Randomized Quick Sort (as currently

implemented in VisuAlgo sorting page by 03 July 2018, during the discussion in Lecture 2a)

requires at least 105 comparisons to make X sorted in increasing order.

3. Given a Java Linked List that already contains 101 integers from 0 (head) ↔ 1 ↔ 2 ↔ 3 ↔ ...

↔ 100 (tail). Show where to insert 4 more integers so that Java has to perform at least 200

pointer advancements to be able to insert those 4 more integers in their correct positions.

5

Section D Marks =

CS2040

E Easy Marks (5 marks)

Write a short (maybe limit yourself to up to 5 minutes to do this) but honest (and not anonymous)

feedback on what you have experienced in the first 6 sessions (3 weeks) of CS2040 in Special Semester

4. Suggestions that are shared by majority (not a one-off feedback) and can be easily incorporated

to make the next 6 sessions (3 weeks) of CS2040 better will be done. Grading scheme: 0-blank,

1/2-considered trivial feedback but not blank, 4/5-good and constructive feedback, thanks.

6

Section E Marks =

CS2040

F Applications (40 marks)

F.1 FIFA World Cup Group Stage (25 marks)

In the recent FIFA World Cup 2018, there is an interesting tie-breaking situation for the first time

in history. Colombia, Japan, Senegal, and Poland were drawn together in group H. After Matchday

1, Japan beat Colombia 2-1 and Senegal also beat Poland 2-1 too. During Matchday 2, Japan and

Senegal both had a draw 2-2. Finally after Matchday 3, Japan lost to Poland 0-1 and Senegal also

lost to Colombia 0-1.

Because a win (scoring more goal(s) than opponent) worth 3 points, a draw (scoring equal number

of goal(s) with opponent) worth 1 point, and a loss worth 0 point, then both Japan and Senegal were

actually tied with 3+1 = 4 points each. To rank the teams, FIFA uses these rules, in decreasing order.

1. Highest number of points (using the +3/+1/0 for win/draw/loss above),

2. Goal difference (number of goals scored minus number of goals conceded, can be +ve/0/-ve),

3. Goals scored (we stop here for this question),

4. Points obtained in group games between teams concerned,

5. Goal difference from games involving teams concerned,

6. Number of goals scored in games between teams concerned,

7. Fair play points (For the first time in history, a World Cup group has to be decided by rule so

far down the list: Rule no 7, the fair play rule. Japan went through as they only had 4 yellow

cards whereas Senegal had 6 yellow cards),

8. Drawing of lots by FIFA (imagine that...)

For this question, let’s simplify it a bit. You are given 𝑛 football teams (2 ≤ 𝑛 ≤ 1 000) numbered

from 1 to 𝑛 in the first line and then a list of 𝑛× (𝑛− 1)/2 results of matches between them each in

one line with format: Team id 𝑎, a space, team id 𝑏 (1 ≤ 𝑎, 𝑏 ≤ 𝑛), a space, goal(s) 𝑥 scored by team

id 𝑎, a dash ‘-’, and finally goal(s) 𝑦 scored by team id 𝑏 during their match (0 ≤ 𝑥, 𝑦 ≤ 31).

Your task is to sort and then print 𝑛 team results in correct order by using the first three tie-

breaking three rules above plus a rule that simplifies rules 4-8: Highest number of points, if tie,

by goal difference, if still tie, by goals scored. If still tie at this point, prefer team with lower

team id in this question. The format of the 𝑛 output lines is: Team id, a space, points of this team

id, a space, goal difference of this team id, a space, goal scored by this team id.

A sample I/O is shown below. Team id 1/2/3/4 are actually Colombia/Japan/Senegal/Poland,

respectively.

Sample Input → Sample Output

4 1 6 3 5

1 2 1-2 2 4 0 4

3 4 2-1 3 4 0 4

2 3 2-2 4 3 -3 2

1 4 3-0

2 4 0-1

1 3 1-0

7

CS2040

A skeleton Java code has been written for you. Please complete it and analyze its time complexity.

import java.io.*;

import java.util.*;

class E1_WC {

public static void main(String[] args) throws Exception {

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

PrintWriter pw = new PrintWriter(System.out);

// Elaborate how you will read the input (n + n*(n-1)/2 lines) and store them

// Elaborate how you will sort the teams here

8

CS2040

// Elaborate how you will print out the output (n lines) here

pw.close();

}

// you can create a new (helper) class(es) if necessary

} // the overall time complexity of my Java code above is O(______________)

9

CS2040

F.2 Stacking Integers (15 marks)

You are given three stacks: 𝑠1, 𝑠2, 𝑠3 where 𝑠2 and 𝑠3 are initially empty and 𝑠1 contains 𝑛 (1 ≤ 𝑛 ≤
100 000) distinct positive integers ∈ [1..𝑛] but in arbitrary order.

Your job is simply to determine if it is possible to make 𝑠3 contains 𝑛 positive integers in decreasing

(sorted) order from top of stack to bottom, but you are constrained as follows:

1. You can only transfer integers from a lower numbered stack to a higher numbered stack.

2. You can use 𝑠2 as a temporary data structure (if necessary).

3. You are NOT allowed to use any other data structure in your solution.

4. You are allowed to use one (or two) more temporary integer variable(s) (if necessary).

For example, if 𝑠1 contains {5 (bottom), 2, 1, 3, 4 (top)} initially, then the answer is ‘possible’:

(top) 4 5 (top)

3 4 4

1 1 3 3

2 2 3 3 2 2 2

(bottom) 5 5 4 5 4 1 5 1 1 (bottom)

-------- => -------- => -------- => -------- => --------

s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3

Two sample I/Os are shown below. Convince yourself that the answer for second sample is ‘impossible’:

Sample Input 1 → Sample Output 1

5 2 1 3 4 true

Sample Input 2 → Sample Output 2

1 5 2 4 3 false

A skeleton Java code has been written for you. Please complete it and analyze its time complexity.

import java.io.*;

import java.util.*;

class E2_Stack {

public static void main(String[] args) throws Exception {

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

PrintWriter pw = new PrintWriter(System.out);

String[] token = br.readLine().split(" "); // there are n tokens

Stack<Integer> s1 = new Stack<>();

for (int i = 0; i < token.length; i++) // O(n)

s1.push(Integer.parseInt(token[i])); // permutation of [1..n]

pw.println(isPossible(s1));

pw.close();

}

10

CS2040

// is it possible to reorder content of s1 (a permutation of [1..n])

// into its sorted permutation [1 (bottom), 2, ..., n-1, n (top)] in s3?

private static Boolean isPossible(Stack<Integer> s1) {

Stack<Integer> s2 = new Stack<>(); // the ONLY (temp) data structure allowed

Stack<Integer> s3 = new Stack<>(); // contain [1, 2, ..., n (top)] at the end

// you can use at most two more integer variables (if necessary)

}

} // the overall time complexity of my Java code above is O(______________)

– End of this Paper, All the Best –

11

Section F Marks = + =

	Worst Case Time Complexity Analysis (10 marks)
	Analysis (15 marks)
	Alternative Implementation (15 marks)
	Create Test Cases (15 marks)
	Easy Marks (5 marks)
	Applications (40 marks)
	FIFA World Cup Group Stage (25 marks)
	Stacking Integers (15 marks)

