
National University of Singapore

School of Computing

Semester 1 (2014/2015)

CS2010 - Data Structures and Algorithms II

Written Quiz 1 (10%)

Saturday, September 20, 2014, 10.00am-11.17am (77 minutes)

INSTRUCTIONS TO CANDIDATES:

1. Do NOT open this question paper until you are told to do so.

2. Written Quiz 1 is conducted at COM1-2-206/SR1.

3. This question paper contains THREE (3) sections with sub-questions.

It comprises TEN (10) printed pages, including this page.

4. Write all your answers in this question paper, but only in the space provided.

You can use either pen or pencil. Just make sure that you write legibly!

Important tips: Pace yourself! Do not spend too much time on one (hard) question.

5. This is an Open Book Examination. You can check the lecture notes, tutorial files, problem

set files, Steven’s ‘Competitive Programming 1/2/2.5/3’ book, or any other printed material

that you think will be useful. But remember that the more time that you spend flipping through

your files implies that you have less time to actually answering the questions.

6. Please write your Matriculation Number here: and

your Tutorial Group Number/Tutorial TA Name/day and time:

But do not write your name in order to facilitate unbiased grading.

7. All the best :).

After Written Quiz 1, this question paper will be collected, graded manually over recess week,

and likely returned to you via your Tutorial TA on Week07.

1

CS2010

1 Future Question Types in VisuAlgo (18× 3 = 54 marks)

These are the set of questions involving BST/AVL Tree/Binary Heap/UFDS/Bitmask that Steven

wish can be automated in VisuAlgo Online Quiz system in the near future (Myself and my only FYP

student this AY: Erin will do these soon). Note that some of these questions cannot be randomized

which may not be truly suitable for the actual Online Quiz (test mode, the hard level) but maybe

good enough for self-training mode (the easy level). Future students who reuse this Written Quiz 1

paper for practice will see that most (if not all) questions have been integrated in VisuAlgo.

Instructions: For the first 11 questions, just declare True or False (simply circle the option). If you

circle the correct answer, you will get 3 marks. For the last 7 questions, you will decide True or False

and also give a short and correct explanation before you can get the 3 marks.

1. The smallest element in any BST always has no left child? (T/F)

2. The smallest element in any BST always has no right child? (T/F)

3. The largest element in any BST always has a parent? (T/F)

4. The smallest element in any BST always has a successor? (T/F)

5. The smallest element in any BST always has no predecessor? (T/F)

6. Suppose that we have all distinct integers between 1 and 9999 inside a BST of unknown structure

and we want to search for the integer 7. It is possible to have a search sequence as follows: 9999,

9998, 9997, 9996, ... (decreases by 1), ..., 10, 9, 8, 7. (T/F)

7. The number of structurally different BSTs (not necessarily balanced) that contains n = 3 distinct

integers is 5? (T/F)

8. The smallest element in a Binary Max Heap that contains > 3 distinct integers is always at one

of the leaves? (T/F)

9. The second largest element in a Binary Max Heap that contains > 3 distinct integers is always

one of the children of the root? (T/F)

10. An array A of n distinct integers that are sorted in descending order forms a valid Binary Max

Heap? You can assume that A[0] is not used and the array values occupy index [1..n]. (T/F)

11. Given a Binary Max Heap, calling ShiftDown(i) ∀i > heapsize/2 will never change anything

in the Binary Max Heap. (T/F)

2

CS2010

12. Suppose that we have all distinct integers between 1 and 9999 inside a BST of unknown structure

and we want to search for the integer 7777. It is possible to have a search sequence as follows:

7, 932, 1010, 8089, 7523, 8134, 7777. (T/F, then explain)

13. The insert operation in BST is always not commutative in the sense that inserting x and then

y into an existing BST (not necessarily balanced) always produce different BST as inserting y

and then x. Note that x ̸= y. (T/F, then explain)

14. The delete operation in BST is always commutative in the sense that deleting x and then y

from an existing BST (not necessarily balanced) always produces the same BST as deleting y

and then x. Note that x ̸= y and both x and y exists in the BST. (T/F, then explain)

15. The second smallest element in a Binary Max Heap that contains > 3 distinct integers is always

at one of the leaves? (T/F, then explain)

16. The third largest element in a Binary Max Heap that contains > 3 distinct integers is always

one of the children of the root? (T/F, then explain)

17. Given n = 16 disjoint sets initially in a UFDS, it is possible to call unionSet(i, j) and/or

findSet(i) operations to get a single tree with rank (height) 4 that represents a certain disjoint

set. Both path compression and union by rank heuristics are used. (T/F, then explain)

18. *** The number of structurally different BSTs (not necessarily balanced) that contains n = 4

distinct integers is 15? (T/F, then explain; note that THREE STARS = very hard question)

3

CS2010

2 Questions That are too Hard to be Automated (25 marks)

2.1 Another way to do BST remove/delete operation? (18 marks)

In Lecture 02, you have seen a way to delete a vertex v with two children from a BST: Replace the

value of v with the value of v’s successor and then remove that (now duplicate) successor vertex.

Is that the only way?

When presented with the same situation (delete a vertex v with two children from a BST), Professor

XYZ from University ABC proposed this deletion strategy instead (in pseudo code):

let x be the vertex that contains the max element in the subtree rooted at v.left

make the new right child of x be v.right

make the parent of vertex v (if exists) points directly to v.left

remove v

The Sub-Questions

1. (4 marks) Perform Professor XYZ’s strategy on deletion of vertex v = 13 from this BST (in

Figure 1) and draw the resulting BST as your answer.

Figure 1: The Starting BST

4

CS2010

2. (4 marks) One more time. Delete vertex v = 8 from the resulting BST that you obtained from

Sub-Question 1 above using Professor XYZ’s strategy again and draw the resulting BST as your

answer. Note that error will carry forward so please be careful.

3. (7 marks) Give a short proof that Professor XYZ’s strategy is always able to delete any vertex

v with two children from a BST correctly.

4. (3 marks) What is the major drawback of Professor XYZ’s strategy so that it is never used

and/or mentioned in typical modern CS classes?

5

CS2010

2.2 Is Binary Heap Still Worth Learning? (7 marks)

When attempting PS2 or in other occasions, some of you might have known that we can actually

choose not to use Binary Heap data structure at all (that is, skip CS2010 Lecture 04) and simply use

a balanced Binary Search Tree (bBST) like an AVL Tree to implement a Priority Queue.

Specifically, we will implement the operation Enqueue(v) of a Priority Queue as an insertion of

v into a bBST and the operation Dequeue() of a Priority Queue as finding the maximum element

of the bBST, saving it in a temporary variable, deleting that maximum element, and returning the

value stored in our temporary variable. The insertion, find max, and deletion operations in a bBST

runs in O(log n). Thus, we can replace Binary Heap with bBST as the underlying data structure to

implement a Priority Queue without any performance penalty.

Moreover, as you have seen in PS2, the operation Delete(v) where v is not the maximum element

is also much harder in a Binary (Max) Heap whereas this is simple in a bBST (just delete v). Moreover,

the operation UpdateKey(v, newv) in a Binary Heap can be quite complicated to implement whereas

this is still simple in a bBST (delete v then insert newv).

So, is Binary Heap still worth Learning in CS2010?

Your task in this question is interesting and this is probably the first time you see this kind of question.

If you think there is a case where Binary Heap is more advantageous than bBST, argue in favor of

saving Binary Heap in CS2010 syllabus. If you think all kind of operations that Binary Heap can

do can be emulated by bBST, argue in favor of replacing the Data Structure discussed in Lecture 04

(Priority Queue) with bBST again instead of Binary Heap so that Steven has more time to teach other

cool Data Structures and/or Algorithms to his CS2010 students. You will be given up to 7 marks

based on your arguments (maximum half of this page, so do not write a long story).

6

CS2010

3 Application (24 marks)

Disclaimer: The following question is the modified (read: simplified) version of a very recent pro-

gramming (problem solving) competition: http://ipsc.ksp.sk/2014/real/problems/h.html. The

original problem author is Michal Forǐsek from Slovakia. To solve this scaled-down question, you need

to remember Hash Table concepts from CS1020 and contrast it with bBST concepts from CS2010...

There are not many data structures that are used in practice more frequently than hashsets and

hashmaps (also known as associative arrays). They get a lot of praise, and deserve most of it. However,

people often overestimate their capabilities. The Internet is full of bad advice such as “just use a

hashset, all operations are O(1)” and “don’t worry, it always works in practice”. We hope that you

know better. And if you don’t, now you’ll learn on the spot during this Written Quiz 1 :O.

Let’s start by looking at two sample demo program below:

import java.io.*;

import java.util.*;

public class HashSetDemo {

public static void main(String[] args) throws IOException {

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

HashSet<Long> hashset = new HashSet<Long>();

for (String x = in.readLine(); x != null ; x = in.readLine()) {

hashset.add(Long.parseLong(x));

if (!hashset.contains(Long.parseLong(x))) // should never be false

System.out.println("ERROR");

}

}

}

import java.io.*;

import java.util.*;

public class TreeSetDemo {

public static void main(String[] args) throws IOException {

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

TreeSet<Long> treeset = new TreeSet<Long>(); // that is, change HashSet to TreeSet

for (String x = in.readLine(); x != null ; x = in.readLine()) {

treeset.add(Long.parseLong(x));

if (!treeset.contains(Long.parseLong(x))) // should never be false

System.out.println("ERROR");

}

}

}

7

CS2010

Both programs do the same thing: They read a sequence of signed 64-bit values (Java Long) from the

standard input, one insert the values into a HashSet while the other insert the values into a TreeSet.

Both programs do a check whether those values have been properly inserted into the respective data

structures and report error otherwise.

Based on their limited understanding, many people would claim that HashSetDemo program will

process any sequence of n integers in O(n) time while the TreeSetDemo program requires O(n log n)

time to do the same. Therefore, they conclude that HashSet is always better than TreeSet that we

painfully learn in Lecture 02+03 of CS2010. Are you one of those people?

The Sub-Questions:

1. (10 marks) Propose a sequence of n = 50000 integers that you will insert so that the program

HashSetDemo—for a reason that you will explain—run very slowly. You will be graded based

on the explanation of your idea. That is, you just have to discuss the general characteristics of

those n integers. You do NOT have to enumerate all those 50000 integers.

Figure 2: A very useful hint (you can assume that “>>>” is very similar to “>>”)

8

CS2010

—You can continue your answer for Sub-Question 1 here—

2. (5 marks) What happen if the same extreme case that causes program HashSetDemo to run

very slowly is used on program TreeSetDemo? Explain!

3. (9 marks) Give at least three other scenarios where it is clearly better to use TreeSet (a balanced

BST, CS2010 material) rather than HashSet (CS1020 material)?

9

CS2010

.

– End of this Paper –

Candidates, please do not touch this table!

Section Maximum Marks Your Marks Comments from Grader

1 51+3 bonus = 54

2 18+7 = 25

3 24

Total min(100, 100+3 bonus) = 100

10

