
National University of Singapore

School of Computing

Semester 1 (2012/2013)

CS2010 - Data Structures and Algorithms II

Quiz 1 (15%)

Saturday, September 22, 2012, 10.00am-11.40am (100 minutes)

INSTRUCTIONS TO CANDIDATES:

1. Do NOT open this question paper until you are told to do so.

2. Quiz 1 is conducted at COM1-2-206/SR1.

3. This question paper contains FIVE (5) sections with sub-questions.
It comprises TWELVE (12) printed pages, including this page.

4. Write all your answers in this question paper, but only in the space provided.
You can use either pen or pencil. Just make sure that you write legibly!
Important tips: Pace yourself! Do not spend too much time on one (hard) question.

5. This is an Open Book Examination. You can check the lecture notes, tutorial files, problem
set files, Steven’s ‘Competitive Programming 1/2/2.5’ book, or any other printed material that
you think will be useful. But remember that the more time that you spend flipping through
your files implies that you have less time to actually answering the questions.

6. Please write your Matriculation Number here:

and your Tutorial Group Number (or Tutor Name):

But do not write your name in order to facilitate unbiased grading.

7. All the best :).
After Quiz 1, this question paper will be collected, graded manually in 2-3 weeks, and likely
returned to you via your Tutorial TA on Week08.

1



CS2010

–This page is intentionally left blank. You can use it as ‘rough paper’–

2



CS2010

1 ‘ADT Table’: (Questions → Answers) (14 marks)

The answers for this set of questions can be found in the lecture notes, tutorial files, or PS files.
Can you find them as fast as you can? It is O(1) if you already have the answer in your memory.
Please fill in your answers on the space provided, 2 marks per question.
Grading scheme: 0 (zero correct answer), 1 (one correct answer), 2 (two correct answers).

1. Given an unsorted array of size n, what is the best algorithm to find the k-th largest item in the
array? Write down the name of the algorithm and its worst-case time complexity:
Name:
Time Complexity:

2. Given a sorted array of size n, what is the best algorithm to find the k-th largest item in the
array? Write down the name of the algorithm and its worst-case time complexity:
Name:
Time Complexity:

3. There are three cases for deletion in a BST:
First, if the deleted vertex is a leaf, we simply remove that vertex.
Second, if the deleted vertex has one child, we:

Third, if the deleted vertex has two children, we:

4. If n = 1024, then log2 n = .
If n = , then log2 n = 20.

5. A perfectly balanced BST with n items has height as low as .
A totally unbalanced BST with n items has height as tall as .

6. List down two real-life examples where priority queue are used:
Please show a case when the priority matters!
1.

2.

7. The time complexity of Heap Sort is compared to Merge Sort.
However, the time complexity of Heap Sort is than Insertion Sort.

3



CS2010

2 Basic (b)BST/Heap Operations (30 marks)

Grading scheme: 0 (no answer), 1 (the final answer is totally wrong), 2 (the final answer has minor
mistake(s)), 5 (the final answer is correct).

Q1. (Standard) Binary Search Tree - Insertion (5 marks)

You already have the following BST:

10

/ \

7 20

\ \

8 30

You want to insert five more integers: {1, 2, 3, 24, 25} into the BST above one by one, in that order.
Please draw the final resulting BST below:

Q2. AVL Tree - Insertion (5 marks)

You already have the following AVL tree (FYI, this is similar as Q1 above):

10

/ \

7 20

\ \

8 30

Now, insert the same five integers: {1, 2, 3, 24, 25} into the AVL tree above one by one, in that order.
Please draw the final resulting AVL tree below:

4



CS2010

Q3. (Standard) Binary Search Tree - Deletion (5 marks)

You already have the following BST:

15

/ \

4 16

/ \ \

1 13 19

/ /

12 18

/

11

Now delete 18, delete 16, delete 4, delete 13, and then delete 12, in that order. Assume that if we
delete a node X with two children, we will select its successor to replace X. Please draw the final
resulting BST below:

Q4. Binary Min Heap - Extract Minimum Element (5 marks)

You already have the following Binary Min Heap represented in a 1-based compact array:

Index 0 1 2 3 4 5 6 7 8 9 10

Value N/A 1 3 2 7 5 4 6 11 12 13

You extract the three smallest elements in this Binary Min Heap (obviously {1, 2, 3}) by calling
ExtractMin() three times. Please update the final resulting Binary Min Heap compact array below:

Index 0 1 2 3 4 5 6 7

Value N/A

5



CS2010

Q5. Binary Max Heap - Insertion/Build Heap Slower version (5 marks)

Insert ten integers: {-14, 34, -24, 37, 39, 57, 99, -5, -7, 10} into an initially empty Binary Max Heap
one by one, in that order. Please draw the final resulting Binary Max Heap below:

Q6. Binary Max Heap - Build Heap Faster version (5 marks)

Build a Binary Max Heap from the same set of ten integers as shown in Q5 using the O(n) BuildHeap
algorithm as mentioned in Lecture 04. Please draw the final resulting Binary Max Heap below:

6



CS2010

3 Intermediate (b)BST/Heap Operations (26 marks)

3.1 BST++ (12 marks)

You are given a BST that contains only integer values. You want to output only the vertices in the
given BST that have exactly two children in descending order. Please look at an example below.
Vertices that have exactly two children are highlighted with a star (*). For this example, we output
these integers: 13, 10, 4.

10*

/ \

4* 11

/ \ \

1 5 15

/

13*

/ \

12 14

Write your (short) pseudo-code below:

7



CS2010

3.2 Heap++ (14 marks)

You have just learned that Binary (Max) Heap data structure can be used as an efficient Priority
Queue. Let’s assume that this Priority Queue has two basic operations: enqueue(item, priority)

that will insert item with certain priority into the priority queue and dequeue() that will return
(and simultaneously remove) an item in the priority queue with the highest priority. Assume that if
there are ≥ 1 items with the same priority, this dequeue() operation will return any of them.

Last semester, you have learned the standard First-In First-Out (FIFO) Queue and Last-In First-
Out (LIFO) Stack data structures in CS1020. Now, let’s combine the knowledge.

A). Show how to implement enqueue(item) and dequeue() operations of a standard FIFO Queue by
making use of Priority Queue enqueue(item, priority) and dequeue() operations (6 marks)!

I will implement enqueue(item) by:

I will implement dequeue() by:

B). Show how to implement push(item) and pop() operations of a standard LIFO Stack by making
use of Priority Queue enqueue(item, priority) and dequeue() operations (8 marks)!

I will implement push(item) by:

I will implement pop() by:

8



CS2010

4 Analysis (15 marks)

Prove (the statement is true) or disprove (the statement is false) the following statements below.
If you want to prove it, provide the proof (preferred) or at least a convincing argument.
If you want to disprove it, provide at least one counter example.
Three marks per each statement below (1 mark for saying correct/wrong, 2 marks for explanation):
Note: You are only given a small amount of space below (i.e. do not write too long-winded answer)!

1. Given a vertex x of a not necessarily balanced BST where x has exactly two children, we are
always able to find a successor of x in this BST.

2. The largest integer in a balanced BST (according to the +/- 1 balance criteria of AVL tree) that
contains exactly three distinct integers must be located on the right subtree of the root.

3. The third largest integer in a Binary Max Heap with more than two integers (all integers are
distinct) is always one of the children of the root.

4. The smallest integer of a Binary Max Heap with more than one integer (all integers are distinct)
is always a leaf vertex.

5. Instead of using Binary (Max) Heap data structure, we can implement Abstract Data Type
Priority Queue with a balanced BST (e.g. AVL tree) and still maintain O(log n) performance
for enqueue(item, priority) and item with highest priority dequeue() operations.

9



CS2010

5 Application (15 marks)

There are 20 clubs in the current English Premier League (EPL). Some notable teams are Manchester
City (last year’s winner), Manchester United, Chelsea, Arsenal, Liverpool, etc. You conducted a
survey to n football fanatics and ask them which team will be in the top 4 this year (the order of the
4 clubs does not matter in your survey). The input given to your program is therefore n lines of 4
strings each. Each string (team name) has no more than 20 alphabet characters.

Let’s define the popularity of a top 4 configuration to be the number of football fanatics selecting
exactly the same combination of top 4 clubs. A combination of top 4 clubs is considered most popular
if there is no other combination that has higher popularity.

Now you want to know the total number of football fanatics who pick some combination of top 4
clubs that is most popular.

Example 1: There are n = 4 respondents to your survey as shown below:

1. ManCity - ManUtd - Chelsea - Arsenal

2. ManUtd - Chelsea - ManCity - Liverpool

3. ManCity - ManUtd - Chelsea - Arsenal

4. ManUtd - ManCity - Arsenal - Chelsea

The combination of top 4 clubs that is the most popular in your survey is: ‘Man City - Man Utd -
Chelsea - Arsenal’ and its 4! = 24 possible permutations – highlighted in bold above. This combination
is picked by 3 football fanatics. Therefore, we answer 3.

Example 2: There are n = 5 respondents to your survey as shown below:

1. ManCity - ManUtd - Chelsea - Arsenal

2. ManUtd - Chelsea - Arsenal - Liverpool

3. ManUtd - ManCity - Arsenal - Chelsea

4. ManUtd - Arsenal - Liverpool - Chelsea

5. Chelsea - Swansea - WestBrom - ManCity

The combination of top 4 clubs that is the most popular in your survey are both: ‘Man City - Man
Utd - Chelsea - Arsenal’ and its permutations – highlighted in bold above and ‘Man Utd - Chelsea
- Arsenal - Liverpool’ and its permutations – highlighted in italic above. Each of these two popular
combinations is picked by 2 football fanatics. Therefore, we answer 2+2 = 4.

10



CS2010

There are different possible solutions for this non-original problem (the problem source will be revealed
after Quiz 1). All possible solutions just require algorithmic knowledge taught so far. Your solution
will be awarded different marks based on the criteria below:

Max Marks Requirement

4 Partial marks for incomplete solution
7 An O(n2) solution, should be able to solve test cases with 1 ≤ n ≤ 1, 000
10 An O(n log n) solution, should be able to solve test cases with 1 ≤ n ≤ 100, 000
15 An O(n) solution, should be able to solve test cases with 1 ≤ n ≤ 1, 000, 000

Please come up with the best possible solution and analyze its time complexity.
You just need to outline your ideas (use pseudo codes) to answer this question.
Note 1: You are only given a small amount of space below (i.e. do not write too long-winded answer)!
Note 2: Do not attempt this question unless you have completed the other questions.

11



CS2010

– End of this Paper –

Candidates, please do not touch this table!

Question Maximum Marks Student’s Marks

1 14

2 30

3 26

4 15

5 15

Total 100

12


