
CS2040
Data Structures and Algorithms Extra Practice Set 2

AY2019/2020
Semester 4

True, False, Explain

Decide whether each of the following statements is true or false, and give a reason.

Problem 1. In a connected, weighted graph, every lowest weight edge is always in some minimum spanning tree.

[True / False]

Solution. True. It can be the first edge added by Kruskal’s algorithm.

Problem 2. For a connected, weighted graph with n vertices and exactly n edges, it is possible to find a minimum spanning
tree in O(n) time.

[True / False]

Solution. True. This graph only contains one cycle, which can be found by a DFS. Just remove the heaviest edge in that cycle.

Problem 3. Negating all the edge weights in a weighted undirected graph G and then finding the minimum spanning tree
gives us the maximum-weight spanning tree of the original graph G.

[True / False]

Solution. True.

Problem 4. In a graph with unique edge weights, the spanning tree of second lowest weight is unique.

[True / False]

Solution. False. For example, the spanning tree of second lowest weight has cost 9 for the graph below. You can verify that
there is more than one way to connect the nodes up with cost 9.

Problem 5. If a graph has a unique shortest path P from node s to node t, and has a unique minimum spanning tree T , then
every edge in P must also be in T .

[True / False]

Solution. False. Counter-example is a triangular graph with edges of weight 3,4,5.

CS2040
Data Structures and Algorithms Extra Practice Set 2

AY2019/2020
Semester 4

Problem 6. In a simple, undirected, connected, weighted graph with at least three vertices and unique edge weights, the
heaviest edge in the graph is in no minimum spanning tree.

[True / False]

Solution. False. If the heaviest edge in the graph is the only edge connecting some vertex to the rest of the graph, then it must
be in every minimum spanning tree.

Problem 7. Suppose that T is a minimum spanning tree of G. If we increase the weight of each edge of G by the same
positive amount δ , T is not guaranteed to be a minimum spanning tree.

[True / False]

Solution. Yes. Since each tree in G has (|V | − 1) edges, after the increase of weight, the total weight of each tree will be
increased by the same amount (|V |−1)δ . T is therefore still the minimum spanning tree in the new graph.

Problem 8. An AVL tree is balanced, therefore a median of all elements in the tree is always at the root or one of its two
children.

[True / False]

Solution. False. An AVL tree doesn’t guarantee that the left and right subtrees will be equal sizes; it only guarantees that the
heights of the trees are close. You can try to construct a counterexample.

Problem 9. If every node in a binary search tree has either 0 or 2 children, then performing a find operation on the tree takes
O(logn) time.

[True / False]

Solution. False. One counterexample is the tree below. Since it has O(n) height, a find operation can take O(n) time.

Problem 10. Let P be a shortest path from some vertex s to some other vertex t in a directed graph. If the weight of each
edge in the graph is increased by one, P will still be a shortest path from s to t.

[True / False]

Solution. False. For example, you can construct a ring of vertices connected by edges of weight 0.

Problem 11. If a weighted directed graph G is known to have no shortest paths longer than k edges, then it suffices to run
Bellman-Ford for only k passes in order to solve the single-source shortest paths problem on G.

[True / False]

Solution. True. We need to run bellman ford for as many iterations as the maximum number of edges in any shortest path in
the graph.

CS2040
Data Structures and Algorithms Extra Practice Set 2

AY2019/2020
Semester 4

Problem 12. BFS takes O(V +E) time irrespective of whether the graph is presented with an adjacency list or with an
adjacency matrix.

[True / False]

Solution. False. With an adjacency matrix representation, visiting each vertex takes O(V) time, as we must check all n
possible outgoing edges in the adjacency matrix. Thus, BFS will take O(V 2) time using an adjacency matrix.

Credits: Problems taken from MIT 6.006 Introduction to Algorithms / 6.046 Design and Analysis of Algorithms

