
CS2040
Data Structures and Algorithms Extra Practice Set 1

AY2019/2020
Semester 4

True, False, Explain

Decide whether each of the following statements is true or false, and give a reason.

Problem 1. Given an array of n distinct comparable integers, we can identify and sort the n
logn smallest of them in O(n) time

using a heap.

[True / False]

Problem 2. Given k distinct integer keys, there exists a binary search tree containing all k of them that satisfies the max heap
property.

[True / False]

Problem 3. Depth-first search solves single-source shortest paths in an unweighted, directed graph G=(V,E) in O(|V |+ |E|)-
time.

[True / False]

Problem 4. Given a connected weighted directed graph having positive integer edge weights, where each edge weight is at
most k, we can compute single source shortest paths in O(k|E|) time.

[True / False]

Problem 5. Given a Set AVL tree storing n keyed items ordered by key, one can construct a key-ordered max-heap on the
same n items in worst-case O(n) time.

[True / False]

Problem 6. Given a weighted connected undirected graph G = (V,E) containing exactly |V | − 1 edges, one can solve
weighted Single-Source Shortest Paths from any s ∈V in O(|V |) time.

[True / False]

Problem 7. A max heap can be converted into a min heap in linear time.

[True / False]

Problem 8. Performing a single rotation on a binary search tree always results in binary tree that also satisfies the BST
Property.

[True / False]

Problem 9. If a node a in an AVL tree is not a leaf, then a’s successor is a leaf.

[True / False]

CS2040
Data Structures and Algorithms Extra Practice Set 1

AY2019/2020
Semester 4

Problem 10. Given an array of n integers representing a binary min-heap, one can find and extract the maximum integer in
the array in O(logn) time.

[True / False]

Problem 11. Any binary search tree on n nodes can be transformed into an AVL tree using O(logn) rotations.

[True / False]

Problem 12. Given a graph where all edge weights are strictly greater than -3, a shortest path between vertices s and t can be
found by adding 3 to the weight of each edge and running Dijkstra’s algorithm from s.

[True / False]

Credits: Problems taken from MIT 6.006 Introduction to Algorithms

