Multiple-Choice Questions
Q1 [4m]

We apply Insert(82) to the binary max heap shown below. Which of the following arrays
correctly represents the resulting binary max heap? Note that the first element of the array
in each option has index 1.

A) 97,82,79,77,70,67,65,47,45,30,29,12,8

B) 97,79,70,77,47,45, 67, 29, 65, 30, 8,12, 82

C) 97,82,79,70,77,47,45, 67,29, 65, 30, 8,12

D) 97,79,82,77,47,70,67, 29, 65, 30, 8, 12, 45

E) 97,79,82,77,47,67,70, 29, 65, 30, 8, 12, 45

F) None of the other options is the correct answer.
Q2 [4m]

An AVL tree containing N integer keys is shown below. Each node is augmented with
subtree size (in the diagram the keys are shown, but subtree sizes are not shown). The AVL
tree supports the O(log N) recursive rank operation as described in tutorials.

rank(key) returns the 1-based in-order position of a given key. Key 11 has rank 3.

When rank(61) is performed, what happens at the recursive rank(current_node, key)
call where current_node is the node with key 50 (if it does reach that node)?

A) Node with key 50 will not be reached.

B) The recursive call at node with key 50 will return 9.

C) Therecursive call at node with key 50 will return 10.

D) The recursive call at node with key 50 will recurse on the right child and add 9.

E) The recursive call at node with key 50 will recurse on the right child and add 2+1.
Q3 [4m]

How many topological orderings does the directed graph with 5 vertices shown below
have?

A) 0
B) 1
c) 2
D) 3
E) 4
F) 5
Q4 [4m]

DFS on a graph can be performed pre-order or post-order. Pre-order DFS “visits” an
unvisited vertex before recursing on its neighbours, while post-order DFS holds on to an
unvisited vertex and only “visits” it after first recursing on its neighbours. “Visit” here
refers to adding of the vertex to a sequence of vertices, and NOT to when each vertex is
marked as visited.

A directed graph with 8 vertices, numbered 0 to 7 inclusive, is shown below and stored as
an adjacency list A. The location of only vertices 0 and 7 are known, while the order of
edges in A are unknown.

i)
ii)
iii)

iv)

The first “visited” vertex in pre_order_DFS(A, ©) must be 0.
The last “visited” vertex in pre_order_DFS(A, ©) mustbe 7.
The first “visited” vertex in post_order_DFS(A, ©) mustbe 7.

The last “visited” vertex in post_order_DFS(A, ©) must be 0.

Which of the above claims are true?

A) iandiionly.

B) iandiii only.

C) 1iandiv only.

D) i and iii only.

E) iiiand iv only.

F) All ofj, ii, iii and iv.
Q5 [4m]

There is a graph G with V vertices and at least V edges. Which of the following statements
about running Dijkstra’s algorithm on G is false?

A)
B)
)

D)

E)

If there are cycles within G, Original Dijkstra’s algorithm may still work.
If G is a directed graph, Original Dijkstra’s algorithm may still work.

Original Dijkstra’s algorithm can work on sources where some vertices are
unreachable.

If ALL edge weights in G are negative, Dijkstra’s algorithm and/or G can easily be
modified to allow finding of SSSP on G in the same time complexity as the Original
Dijkstra’s algorithm.

If G works properly with the Original Dijkstra’s algorithm, the algorithm will not
relax each edge more than once.

Q6 [4m]

Here are some operations on some data structure containing N elements:

i)

ii)

iif)

iv)

Finding the higher key (smallest key that is strictly larger than a given key) in an
AVL tree.

Given a node in an AVL tree, finding the node with the lower key (largest key that is
strictly smaller than the key of the given node).

Removing element with largest key in a fixed-capacity maximum binary heap.

Removing element with largest key in a fixed-capacity minimum binary heap.

How many of the above operations have worst-case that runs in O(log N) time?

A) 0
B) 1
) 2
D) 3
E) 4
Q7 [4m]

Which of the following about running Kosaraju’s algorithm on input graph G is true?

A)

While running the algorithm, we get a sequence that shows the topological ordering
of G.

B) Every vertex in G must have at least one outgoing edge.

C) BFS mustbe used within the algorithm.

D) After identifying a sequence of vertices to visit in transpose(G), each vertex in the
sequence will either have already been visited, or traversing the vertex in
transpose(G) covers exactly one SCC in G.

E) [If Gisa DAG with V vertices, the algorithm runs in O(V log V) time or slower.

Q8 [4m]

Given a UFDS which uses both union-by-rank and path compression (as in lectures), with 2
of the (possibly many) elements being X and Y, which of the following is false?

A)

If X is a representative, the height of the tree rooted at X could range from 0 to
rank[X] inclusive.

B) unionSet will never link a taller tree (having greater actual tree height) under a
shorter tree (having lesser actual tree height).

C) If we want to maintain the size of each set, we can create an array that stores the
size of each element, but only maintain those that are a set representative.

D) After unionSet(X, Y), findSet(X) will be the same as findSet(Y).

E) After unionSet(X, Y),thelevel (number of edges upwards to root) of both Xand Y
will never be more than 2.

Q9 [4m]

You are given 2 AVL trees T and U, with nodes that have parent pointers, each having N
elements. In O(1) extra space (extra space includes space taken up by any recursive call),
what is the time complexity of the most efficient algorithm that outputs (prints) a list of the
2N elements in non-descending order?

A) O(N)

B) O(NlogN)

C) O(N?)

D) O(NZlogN)

E) No such algorithm exists given O(1) extra space
Q10 [4m]

A weighted directed graph G with 6 edges is shown below with weights hidden, along with
the output of running Floyd-Warshall APSP algorithm on G. There are 6 distinct edge
weightsin {2, 4, 6, 8, 10, 12}.

fr\to| 0 [1]2
0 0 [8]|2
1 4 106
2 10/6|0

Each option is an adjacency matrix. Which of the following adjacency matrices could G
possibly be?

A)

B)

0)

D)

E)

fr\to|0 |1 |2
0 0 |6 |2
1 4 |0 |8
2 1012 |0
fr\to|0 |1 |2
0 0 |8 |2
1 4 10 |6
2 1012 |0
fr\to|{ 0|1 |2

0 0122

1 410 |6

2 8110 |0

fr\to|0 |1 |2
0 0 [12]2
1 4 10 |6
2 108 |0
fr\to|0 |1 |2
0 0 [12]2
1 4 |10 |8
2 10/6 |0

Analysis Questions
Q11 [6m]

Oizne Mak is trying to implement insertion into a Binary Search Tree (BST) so that the tree
can be balanced. He decides to use the implementation below by randomly inserting nodes
into the left or right with equal probability (i.e. flipping a coin). Consider his
implementation below:

Node insert(Node node, int key) {
double rand = Math.random(); // generates a random number betwen 6.6 and

1.0
if (node == null) {
return new Node(key);
¥
if (rand < 0.5) {
node.left = insert(node.left, key);
} else { // i.e. rand >= 0.5
node.right = insert(node.right, key);
}
return node;
}

Claim: “After insertion using the implementation of insert above, we correctly obtain a
BST.”

a) Isthe claim true or false?

b) Justify your answer.

Q12 [6m]

Consider the following list of 6 edges representing a directed weighted graph of the form
(nodel, node2, weight) as shown in the diagram above.

(0,1,2)
(0,2,0)
(1,2,-4)
(2,3,1)
(2,4,0)
(3,4,-2)

We consider one reduction in the distance estimate from a source vertex to another vertex
to be one relaxation step.

Claim: “Running the Bellman-Ford algorithm from vertex 0 (using the edge list sequence
shown above) will result in more relaxation steps than the Modified Dijkstra (always add to
PQ on distance estimate improvement) from vertex 0.”

a) Isthe claim true or false?

b) Justify your answer.

Q13 [em]
“Close one eye”

Tom is using topological order to obtain a sequence of tasks to perform, given N tasks
numbered with distinct integers 0 to N-1 inclusive, and M constraints each in the form (u,
v), showing that task v can only be started after task u completes.

Tom uses Kahn's algorithm to get an ordering, but he realizes that it is impossible for some
tasks to get done because two or more of those tasks are waiting for each other to
complete. For example, there could be constraints (a, b), (b, c), (c, d), (b, €), (e, a) and (c, a).

Tom notices that ALL such “stuck” tasks either have 1 or 2 constraints left immediately
before it to be cleared. He therefore decides to loosen the constraints to allow a task x to
be performed if there are just 0, 1 or 2 tasks that must be completed before task x can begin
(instead of just 0). Tasks further up the chain of constraints don’t contribute to this count.
In the earlier example, task a can be performed because only tasks c and e have not yet
been completed, but tasks b and d do NOT count towards whether task a can be performed
or not.

More formally, the output ordering should NOT have 3 distinct tasks (x,y,z) performed after
task w, such that there exists constraints (x, w), (y, w) and (z, w).

He thinks Kahn's algorithm can be modified as such:

e Maintain a visited array besides the in-degree array, where initially all vertices are
marked as false i.e. not yet enqueued

e After computing the in-degree of each vertex, mark as true in the visited array
(previously there was no such array) those vertices with indegree <= 2 and enqueue
them in the usual FIFO Queue (instead of only those with indegree == 0)

e When processing each edge (u, v), first decrease the in-degree of v (as usual), then
check if the new in-degree of v < 2 AND v is not already “visited” (instead of == 0). If
so, then mark v as true in the visited array (previously there was no such array) and
enqueue v in the usual FIFO Queue.

Claim: “Tom’s modification allows tasks to be performed when they have either no
constraints, or constraints requiring only 1 or 2 tasks ‘to be completed first’. No task having
constraints involving 3 or more ‘to be completed first’ tasks can be done yet. This algorithm
still runs in O(N + M) time.”

Choose the best response to the claim:

A) False. A cycle can cause vertices to be stuck in the Queue and hence not be
processed.

B) False. A cycle can cause vertices to never be enqueued to the Queue and hence not
be processed.

)
D)

False. A cycle can cause infinite loop with this algorithm.

False. The algorithm works but runs in better than O(N + M) time, since for each
vertex u, there are more neighbours of u being enqueued to the Queue.

E) False. The algorithm works but runs in worse than O(N + M) time as each vertex
may be enqueued to the Queue more than once, since indegree can drop to 2 then to
1 and then again to 0.

F) True. Kahn’s algorithm will skip vertices with cycles so the claim is still correct even
though not all vertices are enqueued to the Queue.

G) True. Loosening the constraints allows vertices with higher in-degree to be
selectively enqueued to the Queue, while the visited array ensures that every vertex
is enqueued at most once and hence visited at most once.

H) True. Loosening the constraints changes the graph into a DAG, and Kahn’s algorithm
works on a DAG.

Q14 [6m]

Consider a simple unweighted, undirected graph G with n vertices and m edges. You can
assume that G is connected. We want to obtain a list of edges that we can remove from G
such that the resulting graph G’ is a tree. Note that this list of edges need not be unique,
there could be multiple choices of edges to remove.

Claim: “It is not possible to find a list of edges to remove from G to obtain G’ in O(n + m)

time.”

Choose the best response to the claim:

A)

B)

0)

D)

E)

F)

G)

True. We need to run Prim’s or Kruskal’s algorithm to find a Minimum Spanning
Tree (MST) first and remove edges not in the MST, which takes O(m log n) time.

True. We need to run Dijkstra’s algorithm to find a Shortest Path Tree (SPT) first
and remove edges not in the SPT, which takes O(m log n) time.

True. We need to run cycle detection to find all cycles and back edges in the graph
first and remove all back edges, which takes O(nm) time.

False. We can run a DFS or BFS to find a Spanning Tree of the graph first and remove
edges not in the Spanning Tree, which takes O(n + m) time.

False. Using an adjacency matrix representation, we can find the edges to remove in
0(1) time.

False. We can run DFS or BFS to obtain a 2-colouring of the graph, then remove all
edges that connect vertices of the same colour, which takes O(n + m) time.

None of the other options are correct.

Open-Ended Questions

Q15 [12m]

The Great Library of Cossun is due to undergo renovations. Oizne Mak, the librarian, is
tasked to move some of the books in the library to the storage room. Each book has a magic
number, where the magic number x for each book is a unique integer suchthat1 < x <n
for integer n. There are a total of n books that need to be moved. Oizne Mak wants to
arrange the books into piles so that it will be easier to transport the books. He will add the
books one by one to a pile, sometimes also removing books one by one if he realises that he
made a mistake, and those books belong somewhere else. However, the playful magician
Ecneics strikes again! He plays another prank on Oizne Mak and casts a spell, which now
requires Oizne Mak to shout the maximum magic number of ALL the books currently in the
pile.

Oizne Mak realises that he can use the magic he learnt last year so that it is easier to
arrange the books. He can now lift the entire pile of books with his magic to remove books
from the bottom of the pile. Oizne Mak needs to support the following operations on a pile
of books:

i. addBook(i): Add a booki to the bottom of the pile.
ii. removeBook(): Remove the book at the top of the pile.

iii. shout(): Shout the largest magic number of all the books currently in the pile.

5 3

9 9 3 7

3 3 3 7 1
Remove Remove Add book 39 Add book 11

1 1 1 39 11

‘max: 9 ‘max: 9 ‘max: 7 ‘max: 39 ‘max: 39

Above figure shows a pile of books with magic numbers 1, 7, 3,9, 5 from bottom to top.
Removing book 5 from the top does not change the maximum magic number. Subsequent
removal of book 9 reduces the maximum magic number to 7. Then, adding book 39 to the
bottom increases the maximum magic number to 39, but subsequently adding book 11 to
the bottom does not cause any changes to the maximum magic number.

Design an efficient algorithm and/or data structure so that Oizne Mak is able arrange the
books such that you get the best worst-case OR amortised time complexity. Remember
that the magic number x for each book is a unique integer.

To help you in streamlining your ideas, please follow the below steps in your answer:

a) Explain your high-level ideas in 8 lines or less.

b) Initialize your data structures where necessary and/or state any augmentations
required (Implementation is not required).

c) Implement the operations in pseudocode or plain English

d) Specify and explain the time complexity of the above methods.

Indicate answers to each subsection - each subsection will have marks allocated to them.

Q16 [12m]

Clustering or Cluster Analysis in statistics is a method for grouping similar data points into
clusters based on their characteristics, usually measured by some distance function. Data
points in the same cluster are more similar to each other than to those in other clusters.

Single-linkage clustering is one method of hierarchical clustering, a type of clustering
method. We make use of the fact that clusters that are close to each other can be merged
together to form a larger single cluster, based on their distance. We define the distance
between two clusters as the minimum distance between any pair of points points across
the two clusters.

Consider a dataset with n data points where we are looking for k clusters for integers k, n
where 1 < k < n. The single-linkage clustering algorithm works as follows:

1. Treateach data point as its own singleton cluster, i.e. there are initially n clusters.
2. Find the two clusters with the smallest distance between them.

3. Merge the two clusters found in Step 2 into a single cluster. (number of clusters
reduces by 1)

4. Repeat Steps 2 and 3 until there are only k clusters remaining.

Let x; represent each datapoint for 1 < i < n. Assume that the distances between each pair
of data points x; and x; are stored in a matrix / 2D-array A where A[i][]] stores the
distance between x; and x;. Note that A[i][j] = A[j][i] and thus A is symmetric and
A[i][i] = ©.You should assume that the distance values can be extremely large numbers.

Consider the following example of the matrix A given below. Values in the matrix not
relevant to the example have been omitted and marked as x. You may assume all such
numbers are numbers larger than any of the other distances in the table.

x| x |41] 0 |35
x| x| x|[35]0

Al1] 2|3 |45
10| 7 |21 x| x
21710 |25 x| X
3(21(25| 0 41| x
4
5

Going through the single linkage clustering algorithm step by step:
e Step 1: Initially, we have 5 clusters: [1], [2], [3], [4], [5].

e Step 2.1: The smallest distance is between clusters [1] and [2] with distance 7
(Points 1 and 2).

Step 3.1: We merge clusters [1] and [2] to form a new cluster [1, 2]. Now we have 4
clusters: [1, 2], [3], [4], [5].

Step 2.2: The smallest distance is between clusters [1, 2] and [3] with distance 21
(Points 1 and 3).

Step 3.2: We merge clusters [1, 2] and [3] to form a new cluster [1, 2, 3]. Now we
have 3 clusters: [1, 2, 3], [4], [5].

Step 2.3: The smallest distance is between clusters [4] and [5] with distance 35
(Points 4 and 5).

Step 3.3: We merge clusters [4] and [5] to form a new cluster [4, 5]. Now we have 2
clusters: [1, 2, 3], [4, 5]

Step 2.4: The smallest distance is between clusters [1, 2, 3] and [4, 5] with distance
41 (Points 3 and 4).

Step 3.4: We merge clusters [1, 2, 3] and [4, 5] to form a new cluster [1, 2, 3, 4, 5].
Now we have 1 cluster: [1, 2, 3, 4, 5].

Notice that at Step 3.2, we did not consider the Points 2 and 3 even though their distance of
25 is lower than the distance between Points 4 and 5 of 35. Since Points 2 and 3 are already
in the same cluster [1, 2, 3], we do not need to consider distances between points in the
same cluster.

Oizne Mak was reading about single-linkage clustering in the The Great Library of Cossun,
when Scitsitats walks in. Scitsitats tells him that single-linkage clustering can be done using
ideas from graph algorithms.

Explain how single-linkage clustering to find k clusters from n data points can be done by
answering the following questions:

a)
b)
c)
d)
e)

What are the graph vertices and edges?

What graph representation are you using to represent and store the graph?

Explain the algorithm you use including any other data structures you may need.
State clearly how you obtain the k clusters or what is used to represent the k clusters

State the time and space complexity of your algorithm in terms of n and/or k,
whichever is relevant.

Q17 [12m]

A ride-hailing company wants to monitor how long customers wait for a driver in real time
across Singapore. Every time a new ride is completed, the system logs that trip’s waiting
time (in seconds) into a live data stream. To ensure fair surge pricing, the company’s
algorithm must continuously report the median waiting time of all rides so far:

If we have odd number of price reports, the median would be the middle price. If we have
even number of price reports, the median price would be the average of the middle pair
price.

Because new trip data arrives thousands of times per second, the system cannot afford to
re-sort all recorded waiting times each time.

Instead, engineers design a data structure that can return the median waiting time in O(1)
time complexity. The following data structure supports the following methods:

i. addNum(x): insert a new waiting time
ii. findMedian(): instantly return the median waiting time

The engineers need your help to support both findMedian() in O(1) time complexity and
addNum(x) in better than linear time complexity.

Note:

e Implementations of findMedian() with a linear time complexity or worse will not
have any marks awarded.

 Implementations of addNum(x) with a linear time complexity or worse will not have
any marks awarded.

To help you in streamlining your ideas, please follow the below steps in your answer:

a) Explain your high-level ideas in 5 lines or less

b) Initialize your data structures where necessary and/or state any augmentations
required (Implementation is not required)

c) Implement the two methods in pseudocode or plain English

d) Specify the time complexity of the above methods

