
CS2040 AY2024/2025 Sem1 – Final Assessment

 -1-

NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING

FINAL ASSESSMENT – Solutions

AY2024/25 Semester 1

CS2040 – Data Structures and Algorithms

 27 November 2024 Time allowed: 120 minutes

INSTRUCTIONS TO CANDIDATES

1. Do NOT open the question paper until you are told to do so.

2. This question paper contains THREE (3) sections with sub-questions. Each section
has a different length and different number of sub-questions. It comprises FORTEEN-
plus-TWO (16) printed pages, including this page (and 2 scratch pages).

3. Answer all questions in this paper itself. Answer the questions in Examplify, NOT on
this paper.

4. This is an Open Book Quiz. You can check the lecture notes, tutorial files, problem set
files, CP4 book, or any other books that you think will be useful. But remember that
the more time that you spend flipping through your files implies that you have less time
to actually answer the questions. No code editors or IDEs are allowed.

5. When this Final Assessment starts, please enter your answers into the Exemplify
software.

6. The total marks for this paper is 100.

STUDENT NUMBER:

For examiners’ use only

Question Max Marks

Q1–10 40

Q11–16 18

Q17–18 5+5

Q19–21 9+9+9

Q22 5

Total 100

A

TUTORIAL GROUP

CS2040 AY2024/2025 Sem1 – Final Assessment

 -2-

MCQs [4 marks per question: 40 marks]

Q1. Consider an array that is organized as a Min-Heap. What is the time complexity of
deleting a particular item from the array? It is not known where the item is in the array
and the array has to remain as a Min-Heap after removing the item.

 (A) O (log n)

 (B) O (n)

 (C) O (n log n)

 (D) O (1)

 (E) O (n2)

Answer: O (n). Because we have to go through and search all elements.

Q2. Consider a graph of V vertices and E edges. What is the space complexity of storing
a graph that has 0 edges (E = 0) when storing the graph using an adjacency list?

 (A) O (V)

 (B) O (E)

 (C) O (V * E)

 (D) O (V log V)

 (E) O (V2)

Answer: O (V) since we have an entry for each vertex and each entry is an empty list.

Q3. Consider a weighted undirected graph which contains 3 vertices. What is the
maximum number of spanning trees that this graph can have?

 (A) 2

 (B) 1

 (C) 0

 (D) 4

 (E) 3

Answer: 3. In a graph with 3 vertices, each spanning tree will have 2 edges, so with a
graph with vertices 0, 1, 2, the spanning trees are:
(1) 0 – 1, 0 – 2 ; (2) 1 – 2, 0 – 2 ; (3) 0 – 1, 1 – 2

CS2040 AY2024/2025 Sem1 – Final Assessment

 -3-

Q4. What is the time complexity of the following piece of code (N > 1)?

int total = 0;

for (int i = 1; i < N * N; i++)

 for (int j = i; j > 0; j = j/2)

 total++;

 (A) O (N log N)

 (B) O (N2)

 (C) O (N3)

 (D) O (N2 log N)

 (E) O (N (log N)2)

Answer: The outer loop runs for N2 while the inner one runs for log N, so total is N2 log N.

Q5. What is the maximum number of nodes in a complete binary tree of height 6?

 (A) 63

 (B) 129

 (C) 127

 (D) 65

 (E) 64

Answer: Maximum would be when all leaves are full ➔ 2(6+1) – 1 = 127.

Q6. Consider the following 0-indexed array which is representing the underlying UFDS.
What could be the resulting array be if you ran the operation unionSet (2, 7), where both
union-by-rank and path-compression are used?

2 3 3 3 3 6 6 6 8

(A)
2 3 3 3 3 6 7 7 8

(B)
2 3 3 3 3 6 3 6 8

(C)
3 3 3 3 3 3 3 2 8

CS2040 AY2024/2025 Sem1 – Final Assessment

 -4-

(D)
2 7 3 3 4 6 2 3 8

(E)
2 3 3 3 3 6 6 8 8

Answer: (B). Node 8 is still separate while 3 has to be the root in the new tree.

Q7. Given the following graph, what would be the ordering of vertices produced by an
algorithm for Topological Sort?

 (A) No Topological Sort possible

 (B) 2 3 4 0 1 6 5

 (C) 2 6 5 3 1 4 0

 (D) 6 3 1 5 4 0 2

 (E) 2 4 0 1 3 5 6

Answer: (C)

Q8. What is the worst case time complexity to print out all the leaf nodes in decreasing
order (largest to smallest) in an AVL tree?

 (A) O (N)

 (B) O (log N)

 (C) O (N2)

 (D) O (N log N)

 (E) O (N2 log N)

Answer: You only need to visit each node once – can be done using a reverse in-order
traversal, so O (N).

0

1

5

2

4 3

6

CS2040 AY2024/2025 Sem1 – Final Assessment

 -5-

Q9. Assuming you have V vertices, what are the maximum number of undirected graphs
(need not be connected) that you can construct?
 (A) V (V – 1)/2

 (B) V!

 (C) 2V

 (D) 2 (V(V – 1)/2)

 (E) V2

Answer: With V vertices, we can have at-most V (V – 1)/2 edges. Each edge may nor may
not exist, so total number of graphs that we can construct is: 2 (V(V – 1)/2)

Q10. Consider a graph G with V vertices and E directed edges which all have the same
weight. Assuming that G has no cycles, which algorithm would you use to solve the
Single Source Shortest Paths Problem? Do take into account the time complexity.

 (A) DFS

 (B) Bellman-Ford’s Algorithm

 (C) Floyd-Warshall’s Algorithm

 (D) Modified Dijkstra’s Algorithm

 (E) BFS

Answer: BFS as it has a time complexity of O (V + E).

CS2040 AY2024/2025 Sem1 – Final Assessment

 -6-

Analysis Questions [18 marks]

This scenario is used for both Q11 and Q12.

A connected undirected weighted dense graph G contains V vertices and E edges with
distinct weights. You are given G as an adjacency list, as well as S1, S2 and S3 which are
3 spanning trees of G. At least 1 edge is different between any 2 of the spanning trees
(i.e. S1, S2 and S3 are all different trees).

You want to find the MST T of G, and you are also told that each edge in T will be in at
least one of S1, S2 and/or S3.

Claim: It is possible to find an algorithm that finds the MST T of G, with the algorithm
always running in faster than O(V2) time (< O(V2) time)

Q11 [2 marks]. The Claim is True/False

True

Q12 [4 marks]. Select the best explanation regarding the claim:

(a) False, the best MST algorithm runs in O(V2) time or worse

(b) False, if edges in T can be found in different spanning trees of G, then Prim’s or
Kruskal’s algorithm will not work on G

(c) False, if edges in T can be found in different spanning trees of G, then Prim’s or
Kruskal’s algorithm will not run efficiently on G

(d) True, we can find an algorithm running in O((V + E) log V) time, and O((V + E) log V) <
O(V2)

(e) True, using radix sort, we can avoid many time-consuming operations

(f) True, we can use some of the given information to create a new graph with lower
density, then run an MST algorithm on the new graph

(g) True, when we union S1, S2 and S3 we form an acyclic graph, and that acyclic graph
formed is T

(h) True, when we union S1, S2 and S3 the graph has not more than 3 cycles, so after
using cycle property repeatedly, the acyclic graph formed is T

Answer: T must be in the union of S1, S2 and S3, but the graph may have multiple cycles.
Union the 3 spanning trees together in O(V) time, then run Prim’s / Kruskal’s algorithm
on the new graph, in O(V log V) time.

CS2040 AY2024/2025 Sem1 – Final Assessment

 -7-

This scenario is used for both Q13 and Q14.

An unsorted array contains N real numbers. You want to find the √N
th

-smallest
element in the array.

Claim: We can do so in worst-case O(N) time or better – Just for this scenario, do NOT
consider average-case / expected time.

Q13 [2 marks]. The Claim is True/False

True

Q14 [4 marks]. Select the best explanation regarding the claim:

(a) False, the best comparison-based sort requires O(N log N) time, so it is not possible
to do better

(b) False, finding smallest element repeatedly requires O(N1.5) time

(c) False, even if we use a binary heap, repeated removals of the top element will exceed
the required time complexity

(d) False, building a binary heap already exceeds the required time complexity

(e) True, by building a binary heap and then dequeuing and/or enqueuing repeatedly

(f) True, by building a ranked AVL tree in O(N) time and then calling the select operation
once in O(log N) time

CS2040 AY2024/2025 Sem1 – Final Assessment

 -8-

This scenario is used for both Q15 and Q16.

Kahn’s algorithm finds and outputs a topological ordering of a directed acyclic graph,
using a queue and maintaining in-degrees of vertices.

However, Kahn’s algorithm is now run on a directed graph G that MAY contain cycles,
resulting in an “ordering” stored in an ArrayList A (on a DAG instead, A would contain a
topological ordering). There are N vertices in the “ordering” stored in A (i.e. N ==
A.size()), while there are V vertices in the graph G numbered 0 to V-1 inclusive.

We want to figure out which of the 3 categories G belongs to:
 has 1 SCC
 has V SCCs
 has more than 1 but less than V SCCs

Claim: With just the numbers V, N and the ArrayList A, but without G, we can always
figure out which one of the 3 categories G belongs to.

Q15 [2 marks]. The Claim is True/False

False

Q16 [4 marks]. Provide justification for your answer to the claim.

Answer:

IFF N == V (N == A.size()), then the graph has V SCCs, i.e., is an acyclic graph, i.e., it is a
DAG.

If 1 <= N < V, then the graph is in (1 … V-1) SCCs.

However, if N == 0, we cannot differentiate between a graph having 1 SCC vs a graph
having (1 … V-1) SCCs. Thus, we cannot differentiate between the first and the third
category.

Vertices that are part of any cycle never reach in-degree 0 in Kahn’s algorithm. These
vertices, along with other vertices reachable from them, will not end up in A. Without G,
we do not know if a vertex is involved in a cycle, or just reachable from a cycle but not
part of it (could be in another SCC).

e.g., both of these graphs have V=3, A=[]:
 0->1, 1->0, 1->2 (2 SCCs)
 0->1, 1->2, 2->0 (1 SCC)

CS2040 AY2024/2025 Sem1 – Final Assessment

 -9-

Structured Questions [42 marks]

This scenario is used for both Q17 and Q18.

Oizne Mak has been tasked to clean the Great Library of Cossun by his supervisor
Mhtirogla for one year as punishment for practicing his magic spells while at work. The
library is made up of n rooms and m corridors, and rooms can be connected to each
other by corridors. Each pair of rooms can only be connected by at most one corridor,
and it is possible to reach all the rooms in the library.

Oizne Mak must clean all the corridors, and make sure that they are clean for the
inspection later. Therefore, he cannot go back to a corridor after he cleans it, so that
he does not accidentally dirty the corridor and will need to re-clean it. He must also
return to the same room that he started in after all the cleaning, since the inspection
that happens later will begin from that same starting room. However, he can revisit
rooms that he has been to before if he does not use the same corridors.

Oizne Mak has asked you for your help to find a sequence of corridors in which he
should clean, so that he does not anger his supervisor Mhtirogla any further. He tells
you that each room in the library is connected to an even number of corridors, and
that the layout of the rooms and corridors changes each day.

In the example below, the Great Library of Cossun has 4 rooms and 4 corridors. If Oizne
Mak starts from room A, then a possible sequence of corridors would be A – B – D – C -
A. The other possible sequence is A – C – D – B – A.

In the second example below, the Great Library of Cossun has 8 rooms and 10
corridors. If Oizne Mak starts from room C, then a possible sequence of corridors would
be C – A – B – C – D – F – G – H – F – E – C. Another possible sequence is C – E – F – H – G –
F – D – C – B – A – C. (There are also other possible sequences)

CS2040 AY2024/2025 Sem1 – Final Assessment

 -10-

The following result may be useful for this question: The total sum of the degrees of all
vertices in a graph is equal to twice the number of edges in the graph, i.e. the total sum
of the degrees of all vertices in a graph is even.

Q17 [5 marks]. Your friend Erutcurts believes that it is always possible to find a
sequence of corridors even if not all the rooms in the library are connected to an even
number of corridors. Explain why Erutcurts is wrong. Choose the most suitable option
from the available options below.

(A) Provide the counterexample of a library with 4 rooms labelled 1,2,3,4 with
corridors (1, 2), (2, 3), (3, 4), (2, 4).

(B) If the library has 3 rooms, then it will always have an even number of
corridors.

(C) Provide the counterexample of a library with 3 rooms labelled 1,2,3 with
corridors (1, 2), (2, 3), (3, 1).

(D) If the sum of the degrees of all vertices in a graph is even, then the degree of
each vertex in that graph must be even.

(E) None of the other options.

Answer: (A). The statement in the question is equivalent to saying that it is possible to
find a Eulerian circuit in any graph (even for graphs with odd degree vertices). This is not
true.

Consider an undirected graph with 3 vertices labelled 1,2,3,4 and edges (1,2), (2,3),
(3,4), (2,4), therefore deg(1) = 1, deg(2) = 3 and deg(3) = deg(4) = 2. We can easily see
that it is not possible to visit all edges exactly once and return to the same vertex, even if
we start from vertex 3 or vertex 4.

Q18 [5 marks]. Design an efficient algorithm to find a possible sequence of corridors for
Oizne Mak. Choose the most suitable option from the available options below:

(A) Model the problem using an undirected graph, then run a modified version of
BFS.

CS2040 AY2024/2025 Sem1 – Final Assessment

 -11-

(B) Model the problem using a directed graph, then run a modified version of BFS.

(C) Model the problem using an undirected graph, then run a modified version of
DFS.

(D) Model the problem using a directed graph, and then run Kosaraju’s algorithm.

(E) None of the other options.

Answer: (C). The solution here is to basically design an algorithm to reconstruct a
Eulerian circuit in the graph. We can do this by running Hierholzer’s algorithm, i.e., a
modified DFS. Assume that we will use an Adjacency List as the representation for the
graph.

1. Initialise a list C to store the output.
2. Initialise a stack S, and push the starting vertex into S.
3. while the stack is not empty:
4. u = S.peek()
5. if vertex u has unused edges:
6. Let (u, v) denote the next unused edge
7. Mark (u, v) as used
8. S.push(v)
9. else:
10. S.pop()
11. If S is not empty then Add (u, S.peek()) to C
12. Reverse C (this step is optional since reverse sequence is also Euler circuit)

The above algorithm will run in O(V + E) time (in fact to be really specific it is O(E) time).
Some implementation details are omitted (such as how to mark (u, v) as used)).

Q19 [9 marks]. This question introduces a data structure known as a deterministic skip
list or DSL.

A DSL is a data structure that can be used to implement the Set ADT and supports the
search, insertion, and deletion of keys. For this question we will only look at the search
operation of a DSL with integer numbers as the keys.

A DSL is a data structure made up of multiple “layers” or levels, each level being an
ordered linked list with the keys in sorted order. Level 1 (the bottommost level) is an
ordered linked list of all the keys in the DSL. Every Level x + 1 is also an ordered linked
list containing a subset of elements in the previous Level x (i.e., the number of list
elements in Level x + 1 is less than or equal to the number of elements in the previous
Level x). Essentially, the higher levels are used as a “shortcut” or “express lane” to
traverse the data structure more quickly.

CS2040 AY2024/2025 Sem1 – Final Assessment

 -12-

Each DSL node has the following structure

DSLNode {
 int key
 DSLNode right
 DSLNode down
}

key represents the integer value being stored, right represents the next node in the list at
the same level, and down represents the node in the previous level (the level below it)
with the same key value.

Each level of the DSL starts with a head node to represent the start of the list. It holds no
key value but has right pointing to the first and smallest element in the same level, and
down pointing to the previous level (the level below it) head node. The last element of
each level points to null representing the end of the list.

The algorithm for the search operation in a DSL is shown below:

search(x, node)
 if node == null or x == node.key // key not found or exact match found
 return node
 else if node.right != null and x >= node.right.key
 return search(x, node.right)
 else
 return search(x, node.down)

Therefore we can start a search from search(x, headTop) where headTop is the head
node of the topmost level. You may assume that the time complexity of search in a DSL
is O(log n), i.e., the total number of node.right and node.down accesses is O(log n).

The example below shows a DSL with some search operations on the DSL.

For search(10), the search order is:

Level 3: h -> 10

For search(20), the search order is

Level 3: h -> 10 -> go down
Level 2: 10 -> 17 -> go down
Level 1: 17 - > 20

CS2040 AY2024/2025 Sem1 – Final Assessment

 -13-

For search(40), the search order is:

Level 3: h -> 10 -> 25 -> go down
Level 2: 25 -> go down
Level 1: 25 -> 28 -> 40

For search(7), the search order is:

Level 3: h -> go down
Level 2: h -> 3 -> go down
Level 1: 3 -> 5 -> 10
7 is not in the DSL

By adding additional information to DSLNode, we should be able to support the select
operation, i.e., select(k, node) that gives the kth smallest element in the DSL when we
call select(k, headTop). (a) State the required information DSLNode must store and
(b) design an algorithm for the select operation. Your algorithm should have the same
time complexity as the DSL search operation. You are not allowed to use any additional
data structure; violation of this restriction will result in marks being deducted.

Using the same example earlier, select(7, headTop) would give the answer 17.

Answer: A very simple but inefficient algorithm would be to go down the head nodes to
the bottom most level, then do a linear search to find the kth element since the
bottommost level is just a list of all the elements.

For a more efficient algorithm, we need to modify the DSL to make it have random
access. We will store the “gap” or distance to the right node in our DSLNode as int
distance. This is analogous to the size of a subtree in the binary search tree. (In fact a 1-
2 DSL is equivalent to a 2-3 Tree.)

DSLNode {
 int key
 DSLNode right
 DSLNode down
 int distance
}

select(k, node)
 if k == 0
 return node
 else if k >= node.distance
 return select (k – node.distance, node.right)

CS2040 AY2024/2025 Sem1 – Final Assessment

 -14-

 else
 return select (k, node.down)

Note that this is almost the same as our search operation, the difference is that instead
of comparing the key, we compare the distance.

Q20 [9 marks]. Oizne Mak continues practicing his magic spells in secret. However,
during one of his practice sessions, he accidentally transported himself to another
parallel universe! Now he is stuck and cannot get back home. Luckily, he had learnt the
spell called IAKESI[a,b] that allows him to create a path from parallel universe a to
parallel universe b. However, there are barriers between worlds that can cause his
IAKESI[a,b] spell to fail, and Oizne Mak can only cast the spell once for every pair of
worlds a and b.

Thankfully, Oizne Mak manages to obtain a map of all the known parallel universes. The
map also tells him the strength of the barrier between each pair of worlds. He sees from
the map that there are N parallel universes. The map also shows that there are M pairs
of parallel universes where the barrier is weaker. For each of these pairs a and b, he
estimates that there is a probability of 0 < p(a,b) ≤ 1that his IAKESI[a,b] spell will
succeed.

Assuming for each IAKESI[a,b] spell, the probability of it succeeding, p(a,b), is
independent for each pair of worlds a and b, Then the probability of Oizne Mak reaching
home through a path of worlds x1, x2, x3…, xt-1, xt would be the product of the probabilities
p(x1, x2) × p(x2, x3) × … × p(xt-1, xt).

The example below shows one possible version of the map Oizne Mak would have
obtained:

In the above example, the maximum probability that Oizne Mak would be able to return
home would be 0.5 × 0.9 × 0.9 × 0.8 = 0.324.

CS2040 AY2024/2025 Sem1 – Final Assessment

 -15-

Describe (a) how you would model the graph of this application, and (b) design an
efficient algorithm to calculate the maximum probability that Oizne Mak would return
home.

Answer: The question here is basically an optimization problem to find the maximum
possible product of probabilities, i.e., a maximization problem. However, we can
instead reformulate it as a minimization problem as follows.

arg max ∏ 𝑝(𝑖, 𝑗)

𝑖,𝑗

≡ arg max log ∏ 𝑝(𝑖, 𝑗)

𝑖,𝑗

≡ arg max ∑ log 𝑝(𝑖, 𝑗)

𝑖,𝑗

≡ arg min ∑ − log 𝑝(𝑖, 𝑗)

𝑖,𝑗

We model the graph as an undirected weighted graph where the vertices are the
different parallel universes. For each edge (a, b), the weight of the graph is 0 ≤

 − log 𝑝(𝑎, 𝑏) < ∞. Then we can just find the shortest path from Oizne Mak’s current
universe to his home universe using Dijkstra’s algorithm in O((E + V) log V) time
complexity since all edge weights would be positive.

Q21 [9 marks]. Tom wants to keep track of many real numbers, and at the same time
keep track of the range (that is, the largest number – smallest number) of the numbers
he has. Tom starts off with no numbers, and needs to support Q operations efficiently:

Add(k, x) – Tom now has k (more) copies of the number x. k is a positive integer

Remove(k, x) – k copies of the number x are taken away from Tom. It is
guaranteed that Tom will have enough copies of the number x to be taken away

Has(x) – Return whether Tom has at least one copy of the number x

ComputeRange() – Among the numbers Tom has, compute (largest number –
smallest number) and return it. It is guaranteed that Tom has at least one number

It is possible that k >> Q, so the time complexity of your solution should ideally be in
terms of Q only.

Write an efficient algorithm for each of the 4 operations, along with any initialization
required beforehand.

CS2040 AY2024/2025 Sem1 – Final Assessment

 -16-

Answer: A brute force solution should take at most O(Q2) time since this involves min,
max O(Q log Q) possible using a TreeMap T of number to frequency, each operation
takes O(log Q) time.

Add(k, x):
 if T.containsKey(x) then T.put(x, k + T.get(x))
 else T.put(x, k)

Remove(k, x): T.put(x, T.get(x) - k)

Has(x): return T.containsKey(x)

ComputeRange(): return T.lastKey() – T.firstkey()

Q22 [5 marks]. Mary works at the NUS University Campus Infrastructure (UCI) office
and she has been tasked to build a system to keep track of all the NUS buildings. Every
building has a unique integer ID. Mary plans to use a regular binary search tree (BST) to
keep track of the IDs and thus make search fast.

Steven gives Mary a list of all the building IDs, which are NOT sorted, to construct the BST.
After Mary enters all the IDs into the BST she remembers that inserting a random list of
IDs may result in an unbalanced binary tree. She didn’t use an AVL tree and her BST also
does not have a size attribute at every node. To get better search time performance on
average Mary plans to do EXACTLY ONE, simple “rotation” of the BST by finding the one
node which, when being “pulled up” to be the new root node, makes the tree more
balanced, i.e., results in a maximum +/- 1 height difference between the left and the right
subtree of the new root. Note, afterwards the BST will be balanced at the root, but within
the subtrees there may still be imbalances.

Here is an example of a BST before and after the simple rotation that Mary performs
once, when the BST is completed (“pulling up” node 4 to become the new root):

 Before After

Which of the following statements are TRUE:

CS2040 AY2024/2025 Sem1 – Final Assessment

 -17-

[] Mary can use DFS on both the original root’s left and right subtrees (starting nodes 4
and 6 in the left figure) to find out the heights of those subtrees.

[] Mary’s one simple rotation guarantees that her BST now has the same structure (i.e.,
nodes are in the same place) as an AVL tree with the same set of nodes.

[] For the simple rotation, Mary not only needs to move a node to become the new root
(4 in the figures), but also needs to check whether that node has two children and
accordingly move one of the child subtrees. (E.g., if 4 had a right subtree, it would
need to be moved to be the left subtree of 5.)

[] In Mary’s new BST in general the search for any node is guaranteed to take equal or
less time than finding the same node in an AVL tree (given the same set of nodes).

[] Determining the heights of the left and right subtrees can be done in O(V).

