Data Structures and Algorithms July 30, 2020
National University of Singapore CS2040
Aquinas Hobor Final Exam

Final Exam

e Don’t Panic.

e Write your name on every page.

e The final exam contains six problems. You have 120 minutes to earn 100 marks.
e The final exam contains 5 pages, including this one.

e The final exam is closed book. You may bring one double-sided handwritten “cheat sheet” of A4 paper to the
quiz. (You may not bring any magnification equipment!) You may not use a calculator, your mobile phone, or
any other electronic device.

e Write your solutions for each problem on separate pieces of paper. Make sure your name is on every page.

e Read through the problems before starting. Do not spend too much time on any one problem. Difficulty is not
necessarily correlated with number of marks.

e Show your work. Partial credit will be given. You will be graded not only on the correctness of your answer,
but also on the clarity with which you express it. Be neat.

e Good luck!
Problem # | Name Possible Points | Achieved Points

1 Sorting jumble 12
2 Independent subsystems of equations 15
3 Tree partition 25
4 Decrease-key 13
5 Computerlandia 15
6 Not one of them thought of a cow. 20

Total: 100

Name: Student id.:




Problem 1.

The first column in the table below contains an unsorted list of words. The last column contains a sorted list of words.
Each intermediate column contains a partially sorted list.

Each intermediate column was constructed by beginning with the unsorted list at the left and running one of the
sorting algorithms that we learned about in class, stopping at some point before it finishes. Each algorithm is executed
exactly as described in the lecture notes. (One column has been sorted using a sorting algorithm not listed.)

Sorting jumble. [12 points]

Identify, below, which column was (partially) sorted with which algorithm. Hint: Do not just execute each sorting
algorithm, step-by-step, until it matches one of the columns. Instead, think about the invariants that are true at every
step of the sorting algorithm.

’ Unsorted ‘ A ‘ B ‘ C ‘ D E F Sorted
Juliett Alfa Bravo Bravo Delta Mike Alfa Alfa
Bravo Bravo Juliett Alfa Bravo Lima Bravo Bravo
Kilo Juliett Kilo Foxtrot Echo Kilo Charlie Charlie
Lima Kilo Lima Charlie Hotel Juliett Delta Delta
Papa Lima Alfa Juliett Golf Delta Echo Echo
Alfa Papa Charlie Delta Alfa India Juliett Foxtrot
Foxtrot Foxtrot Foxtrot Kilo Foxtrot Hotel Foxtrot Golf
Charlie Charlie Papa India Charlie Charlie Kilo Hotel
Oscar Oscar Oscar Golf India Foxtrot Oscar India
Delta Delta Delta Hotel Juliett Echo Lima Juliett
November | November | November | Lima November | Bravo November | Kilo
India India India Echo Oscar Alfa India Lima
Golf Golf Golf Mike Papa Golf Golf Mike
Hotel Hotel Hotel November | Lima November | Hotel November
Mike Mike Mike Oscar Mike Oscar Mike Oscar
Echo Echo Echo Papa Kilo Papa Papa Papa
Unsorted A B C D E F Sorted

Please write the proper number in the blank space beside the letter:

A _ 1. BubbleSort

B _ 2. SelectionSort

C _ 3. InsertionSort

D _ 4. MergeSort (top down, sorts top half before bottom half)
E _ 5. QuickSort (with first element as the pivot)

F _ 6. None of the above




Problem 2. Independent subsystems of equations. [15 points]

A system of equations over some algebraic structure (G, @) is a list of equations, each of which is of the form a®b = c.
Each component (a, b, ¢) is either a constant £ € G or a variable z, y, etc. For example, if G is the integers, and & is
just the usual addition on integers, then the following is a system:

x + 7T =y
T+ 2z o=y
r + z = 20
u + w = 0
v + 12 = wu

A solution to such a system is an assignment of elements of G to variables that makes each equation in the system
hold. For example, the above system has the solution {u = 0, v = =12, w = 0, z = 10, y = 17, z = 10}. In
general, depending on the exact nature of the set G and combining operation &, these systems can be very difficult to
solve. Accordingly, if one wishes to write a program that can solve such equations, it is useful to be able to split the
initial problem into independent smaller subproblems. One way to do this is to separate the original system according
to the variables used, with the observation being that subsystems of equations that contain no variables in common are
independent. For example, the above system can be decomposed into the following two independent subsystems:

o+ T o=y u + w = 0
T+ oz o=y and v o+ 12 — w
x + z = 20

Since the subsystem on the left and the subsystem on the right contain no variables in common, any solution (i.e.
assignment of values to variables) to the left-hand subsystem will not interfere with any solution to the right-hand
subsystem. If—speaking hypothetically—we could solve a system with n equations in O(n°) time, then this decom-
position reduces the time to solve the above system from 5° = 3,125 time-units to 3° + 2° = 243 + 32 = 275
time-units: a significant improvement!

Your task.

(a) [10 points] Please explain an algorithm that can decompose/separate an input system of equations X into a
list of independent subsystems X1, >o, ..., X by variables. To get full marks, your algorithm should be
efficient.

(b) [5 points] Please give a good tight asymptotic (big-O) for your algorithm, in terms of n as the number of
equations in the input system .. Defend your answer.

You can assume that the data comes to you in some convenient way, but should carefully explain any such assumptions.
If you want to use an algorithm and/or data structure we have covered in class as part of your solution, then you don’t
have to explain how it works as long as you’re using it without any modifications.



Problem 3. Tree partition [25 points]

Suppose you have a binary search tree (BST) 7, each of whose nodes are implemented in Java as per the following
class (this code is identical to the BST code given out as part of lecture 10):

class BSTVertex {
BSTVertex (int v) { key = v; parent = left = right = null; height = 0; }
public BSTVertex parent, left, right;
public int key;
public int height; // unused for BST, needed for bBST
public int size; // unused for BST, needed for bBST

Now suppose someone gives you a partition value p, and asks that you split 7 into two BST, the first of which 7;
contains all elements < p and the second of which 7,. contains all of the elements > p. Note that both 7; and 7,- need
to satisfy the BST property.

Your task.

(a) [10points] Please explain clearly how this can be done. Maximum marks require an efficient solution. If you
find it helpful to draw a diagram as part of your explanation, please feel free.

(b) [5 points] Please give a good asymptotic (big-O) bound for your strategy from (a), regardless of whether it
was efficient or not.

(c) [5points] Write a Java function partition that does this partitioning, taking a BSTVertex root and int
partition value as arguments and returning a size-2 array of BSTVertexes that points to 7; (at index 0) and 7,
(at index 1).

(d) [5 points] Suppose that 7 was actually a balanced binary search tree (bBST), in particular an AVL tree. What
can you say about the balanced-ness of 7; and 7., given your partition strategy?

Problem 4. Decrease-key [13 points]

Recall from lecture note 16 that Dijkstra’s algorithm requires a more advanced form of heap: one that supports a
decrease-key operation.
Your task.

(a) [3 points] What is a decrease-key operation and why does Dijkstra’s algorithm need it?
(b) [5 points] Please give an explanation for how such a heap can be implemented.

(c) [5points] Your heap strategy in (b) should take no more than O(log n) time per insert/remove-min/decrease-
key operation. This implies that you can get full marks in (b) even if your heap takes more than O(log n) time
per operation. Hint. If you are having a hard time thinking about a strategy for (b), I encourage you to think
about relatively simple solutions that “get the job done,” even if it means that you won’t get marks for (c).



Problem 5. Computerlandia [15 points]

You have been put in charge of building the power lines in the fast-rising country of Computerlandia. As you might
imagine, everyone in this country needs electrical power to go about their daily tasks. However, since the country
is rather new, and is spending a significant fraction of its GDP on Netflix subscriptions, the power grid needs to be
developed as cheaply as possible. You are given a list of coordinates of each of the cities in (latitude, longitude) form.

Your task.

(a) [10 points] Assuming that the distance between cities is calculated using the Pythagorean method (i.e. that
Computerlandia is far enough away from the poles that the curvature of the Earth has an immaterial effect on
this problem), how can you determine the optimum placements for the electrical wires, so that each city is
connected to each other city (not necessarily directly connected: indirect connections via other cities are fine).

(b) [5 points] What is the asymptotic (big-O) running time of your algorithm? Explain.

Problem 6. Not one of them thought of a cow. [20 points]

The cheese-mites asked how the cheese got there,
And warmly debated the matter;

The Orthodox said that it came from the air,

And the Heretics said from the platter.

They argued it long and they argued it strong,

And I hear they are arguing now;

But of all the choice spirits who lived in the cheese,
Not one of them thought of a cow.

— Sir Arthur Conan Doyle, 1898

Two cheese mites, Taran and Eilonwy, find themselves wandering in a large block of Swiss cheese. Such a cheese has
many holes of a variety of sizes; a “basic” hole is a sphere, and so can be specified by a 4-tuple (z,y, z, ) giving the
3D coordinates and radius of the hole. When basic holes intersect, the resulting shape is called a compound hole; these
can be quite complex if enough basic holes are involved. Taran and Eilonwy are initially located in different holes.
Since they wish to debate philosophy, they are determined to find each other. Being cheese mites, they can eat their
way through the cheese. However, being somewhat vain, they wish to eat the minimum amount of cheese necessary.
Thus, they must travel from hole to hole, eating when the way forward is blocked by cheese (to travel from one basic
hole in a compound hole to another basic hole in that same compound hole doesn’t require them to gain any weight:
they just walk on the inner surfaces). You should also assume that the “outer surface” of the cheese is sufficiently far
away that it doesn’t affect the optimum route (i.e., that the cheese is infinitely large).

Your task.

(a) [15 points] Design an algorithm that, given a list of the basic holes in the cheese, as well as the starting holes
for our mites, computes the optimal path for Taran and Eilonwy.

(b) [5 points] What is the asymptotic (big-O) running time of your algorithm? Explain.

END OF EXAM



