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CS2040 – DATA STRUCTURES AND ALGORITHMS 
(Semester 1: AY2019/20) 

 
 

Time Allowed: 2 Hours 
 

INSTRUCTIONS TO STUDENTS 
1.  Do NOT open the question paper until you are told to do so. 

2.  This assessment paper consists of Twelve (12) printed pages and Nine (9) questions with 
possible subsections.   

Important tips: Pace yourself! Do not spend too much time on one (hard) question. 

3.  This is an Open Book Assessment. You can check the lecture notes, tutorial files, problem 
set files, CP3 book, or any other books that you think will be useful.  

4.  When this Assessment starts, please immediately write your Student Number below. Do 
not write your name. 

5.  You may write your answers in pencil except student number below which should be 
written with a pen. 

6.  All the best! 
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                                        (Write your Student Number above legibly with a pen.) 
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Q6 25  
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Q9 25  
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Section A – Analysis (15 Marks) 
Prove (the statement is correct) or disprove (the statement is wrong) the following statements below. 
If you want to prove it, provide the proof or at least a convincing argument. If you want to disprove it, 
provide at least one counter example. 3 marks per each statement below (1 mark for circling true or 
false, 2 marks for explanation):  

  

1. After doing FindSet(x) operation in Union-Find Disjoint Sets data structure with the path 
compression heuristic activated, the real height (not the rank) of the disjoint set that contains x 
always decreases, when x is not the root of the disjoint set.                                           [True/False] 

  
 False. If x is a child of the root then the real height will still not decrease since x is already placed 

under the root so path compression does not affect the height. 
 
 
 
 
2. Given any AVL tree of height 4, deleting any vertex in the tree will not result in more than 1 

rebalancing operation (not rotation but rebalancing operations!).                                  [True/False]                                                                                                            

 
False. Already have an example in the lecture notes which is an AVL of height 4 where deleting a 
vertex results in 2 rebalancing operations. 

 
 
 
 
3. The time cost for changing a binary MAX heap to a binary MIN heap is O(n).              [True/False] 
 

True. Just treat the array containing the max heap as input and call O(N) fast heap create on it to 
get the min heap. 
 
 

 
4.    To form the MST of an undirected connected graph, exactly 1 edge is removed from every cycle  
 in the graph, namely the largest edge in the cycle.                  [True/False] 
  
 False. In fig 1 below, all the edges in the cycle 0,1,3,4,0 will be removed to get the MST in fig 2. 
 
 
 
 
 
 
 
 
 
 
 
 
                                            Fig 1      Fig 2 
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5.      It is possible for every vertex in a DAG to have an outgoing edge to some other vertex in the  
 DAG.                   [True/False] 
  
 False. Argument is similar to the proof that there must be a vertex with no incoming edges in a  
 DAG as given in the lecture notes.  
 If every vertex in a DAG has an outgoing edge that means, we can pick any vertex X and  

choose an outgoing edge from X and move to the next vertex from that vertex we can do the 
same since every vertex has at least one outgoing edge. After we have visited more than N 
vertices like this where N is the number of vertices in the DAG, then 1 vertex Y must have been 
repeated. The edges used between the 2 successive visits of Y will form a cycle, and this is a 
contradiction that the graph is a DAG. 

 
 
 
 
 
 
 
 
 
For section B, Partial marks will be awarded for correct answers which do not meet the time 
complexity required (or if the required time complexity of not given, then any correct answer that is 
less efficient than the lecturer's answer) . You can write in pseudo-code. Provide enough details to all 
user defined DSes/algorithms/modifications to taught DSes and algorithms so as to show 
understanding of the solution. Sub-questions marked with * can potentially be more difficult. 
 
 
 
Section B – Application (85 Marks) 
 
 
6. Battle Nations [25 marks] 

 

The world of Aquarius is at war! This world is made up of mostly water with 𝑁𝑁 islands which are 
connected by 𝑀𝑀 bridges where (𝑁𝑁 − 1 ≤  𝑀𝑀 ≤  (𝑁𝑁∗(𝑁𝑁−1))

2
). You may assume that there is always a way 

to get from any island to any other island. Each island belongs to either country X or country Y. These 
two countries are now at war with each other.  

In order to attack an island of the enemy country, the attacking country must choose an island 𝐴𝐴 that 
it owns to initiate the attack and an island 𝐵𝐵 of the enemy country to attack.    

Any valid path from 𝐴𝐴 to 𝐵𝐵 the attacker can choose must start from A and end at B such that B is the 
first enemy island encountered along the path (otherwise B cannot be attacked first without attacking 
the previous enemy island(s) along the path!). 

Any bridge along a valid path may potentially be targeted by the enemy country’s aerial bombers to 
be destroyed so as to prevent the attack from happening. Each bridge is given an integer value 𝑊𝑊 (1 ≤
 𝑊𝑊 ≤  10,000) indicating its difficulty to be destroyed (larger 𝑊𝑊  means it is more difficult to be 
destroyed). 
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A 

B 

 

 

 

 

 

Legend:  
 

               = Island belonging to country X 

 

               = Island belonging to country Y 

  

The figure above is a small example of the world Aquarius, where the circles are the islands and the 
lines are the bridges connecting the islands. Here country X is the attacker selecting island A to 

attack country Y’s island B. The dotted edges show a possible valid path to get from A to B. 

  

 

*read b) and c) first before answering a)! 

a)  If you want to represent the world of Aquarius as a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) to answer part b) and c), 
 
      i.) What do the vertices in 𝑉𝑉 represent and what information will you store in a vertex?  [2 marks] 
 

vertices are the islands. Use integer values 0 to N-1 to label each island. Have an attribute nation 
to indicate which nation the vertex belongs to. E.g 1 for country X and 2 for country Y 

 
 
 
 ii.) What do the edges in 𝐸𝐸 represent and what information will you store in an edge?  [2 marks] 
 

edges are the bridges that link islands. For each edge we will store the weight which is the 
number indicating its difficulty in being destroyed. 

 

 

 iii.) Is this a directed or undirected graph?  [1 mark] 

 
This is an undirected graph since the bridges can be crossed both ways. 

 

 

 iv.) What is the best graph data structure 𝐷𝐷 to store this graph to answer b)?  [1 mark] 

 
Adjacency list or edge list (depending on what is the MST algorithm used in b) ). 
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b)  Given the graph data structure 𝐷𝐷 as modelled in a), island 𝐴𝐴 of an attacker and island 𝐵𝐵 of the 
enemy to attack, give the best algorithm you can think of to find the best valid path to get from 𝐴𝐴 
to 𝐵𝐵 such that the weakest bridge (based on its difficulty value of being destroyed) is maximized 
and output the difficulty value of that weakest bridge.  

 If there is no valid path from 𝐴𝐴 to 𝐵𝐵 output -1. [9 marks] 
  
 This is basically a maximin problem with a slight modification. 
 
 1.) Have a variable weakest that keep tracks of the weight of the weakest bridge in the best valid  
        path from A to B. Initialize weakest to -1. 
 
  2.) Run Kruskal’s algorithm on D but instead of sorting in ascending order, sort by descending 

order (to get a maximum spanning tree) 
 
 3.) Next, modify Kruskals’s algorithm  as follows: 
 
        For each edge (u,v,w) in sorted edge list 
   If (u.nation == A.nation && v.nation == A.nation) // edge connects attacker islands 
       If !UFDS.isSameSet(u,v) 
                  UFDS.unionSet(u,v) 
         weakest = w 
   else if ((u.nation == A.nation && v == B) || 
                (v.nation == A.nation && u == B))  // edge connects attacker island to B 

       If !UFDS.isSameSet(u,v) 
                  UFDS.unionSet(u,v) 

         weakest = w 

   If UFDS.isSameSet(A,B)  // found best valid path from A to B 

     Break out of for loop  

 4.) output weakest 

 Same time complexity as standard Kruskal’s : O(MlogN) 

 

c)  Assuming 𝐶𝐶 is the set of islands owned by the attacker and given a fixed enemy island 𝐵𝐵. For each 
of the islands 𝐴𝐴’ in 𝐶𝐶 with a valid path to B, the best path (path that maximizes the minimum 
edge) has been found and edges in the best path from 𝐴𝐴’ to 𝐵𝐵 has been put into an edge list 𝐸𝐸𝐸𝐸. 

 However, the enemy has just destroyed a weakest bridge (𝑢𝑢’,𝑣𝑣’) along the best path from an 
attacker island 𝐴𝐴 to 𝐵𝐵, so the edge representing that bridge has been removed from 𝐸𝐸𝐿𝐿. 

 Given 𝐷𝐷 and 𝐸𝐸𝐸𝐸, now provide an algorithm to find the next best valid path from 𝐴𝐴 to 𝐵𝐵 in      
𝑂𝑂(𝑁𝑁 + 𝑀𝑀) time. Specify any modifications you need to make to the graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) and 𝐷𝐷 and any 
extra data structures you use. 

 Again, if there is no more valid path output -1, otherwise output the weight of the weakest bridge 
in that next best valid path. [10 marks] 
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Here EL will store a subtree of the Maximum spanning tree that consists of only the edges from each 
attacker island to B.  

Since the weakest bridge from an attacker island A to B is destroyed this will cause the subtree to be 
broken into 2 components. 

Modify the vertices to contain an integer attribute label which will indicate which component the 
vertex belongs to. 

 

Since EL is an edge list, create an adjacency list D’ so that counting component algorithm can be run 
efficiently. 

1.) Creating adjacency list from edgelist  O(N+M) 

 a.) Create an empty adjacency list D’  O(N) 

 b.) For each edge (u,v,w) in EL  O(M) 

      Add (u,w) to neighbor list of v  O(1) 

      Add (v,w) to neighbor list of u  O(1) 

 

(Optional can simply use Adj List in step 6) 

Similarly, if D is an adjacency list need to convert it to an edge list as follows: 

2.) Creating edge list from adjacency list  O(N+M) 

 a.) Create an empty edge list EL’  O(1) 

 b.) For each index v in D 

      For each neighbor (u,w) in neighbor list of v 

          Add (u,v,w) into EL’ 

 

3.) Run counting component algorithm on D’ to label the 2 components.  O(M+N) 

4) (Corner case if you get a spanning graph with cycle and not spanning tree)  

        if only 1 component that means there is a cycle and there is another path from A to B with the  

        same weakest bridge so simply return weight of deleted edge 

5.) let bestedge = -1 

6.) For each edge (u,v,w) in El’ or D (if already edge list)  O(M) 

 If (u.label != v.label && (u,v) != (u’,v’))  O(1) // possible replacement  

  If w > bestedge 

      bestedge = w 

7.) return bestedge 

 

Total time taken = O(N+M) 
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7. Sorting or Not? [20 marks] 
 
a)  Given an unsorted array 𝐴𝐴 of 𝑁𝑁 unique floating point values of no fixed precision, where each  
 value may only differ from its correct position in the sorted array by no more than 𝐾𝐾 positions  
 (𝐾𝐾 is much smaller than 𝑁𝑁), give an algorithm that will fully sort 𝐴𝐴 in 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) time. For  
 example if 𝐾𝐾 = 3 and in sorting A, the value 10.3 is at index 10, then in the original unsorted array  
 10.3 can be possibly found at indices 7,8,9,10,11,12,13. [10 marks] 
 
   Use another array A’ and a min heap H as follows: 
 1.) insert the 1st K+1 values of A into H  O(KlogK) 
 2.) for i = K to N-1  O(N) 
  add H.extractMin to back of A’   O(logK) 
  H.insert(A[k])   O(logK) 
     3.) while (!H.empty())  O(K) 
  add H.extractMin to back of A’  O(logK) 
 

     total time complexity = O(KlogK) + O(N)*(O(logK) + O(KlogK) = O(NlogK) since K < N 

 

 

b)  Given a 𝐾𝐾 by 𝑁𝑁 matrix 𝐿𝐿, where each row represents a sorted array of 𝑁𝑁 unique floating point 
values of no fixed precision (thus 𝐾𝐾 sorted arrays), give an algorithm to merge them into 1 sorted 
array of 𝐾𝐾 ∗ 𝑁𝑁 elements in 𝑂𝑂(𝐾𝐾 ∗ 𝑁𝑁 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) time.         [10 marks] 

 

1.) Let A be the final sorted array 

2.) Let A’ be an array of size K containing current indices of the K arrays during the sort. Initialize A’  

      to 0.  

3.) Let H be a min heap containing pairs (i,v) where i is the ith array and v is the current value under  

      consideration in i. H is keyed using v  

4.) For i = 0 to K-1   O(KlogK) time 

          H.insert( (i, L[i][0]) ) 

5.) while (H.size() !=1)   executed N*K at most, therefore O(N*K) 

 Let (i,v) = H.extractMin()  O(logK)  

         add v to back of A  O(1) 

          A’[i] += 1  O(1) 

 If (A’[i] != N) 

     H.insert( (i,L[i][A’[i]]) )  O(logK) 

6.) let (i,v) = H.extractMin() 

7.) for j = A’[i] to N-1  // for last array simply add everything remaining to A 

 add L[i][j] to back of A 

Total time complexity = time complexity of step 5 = O(N*K*logK) 
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8. Number Candies [15 marks] 

The current rage among children are number candies. As the name suggest, these candies are given 
a number from 1 to 𝑁𝑁 where 𝑁𝑁 is at least 10 million and can be up to the billions! The ultimate goal 
is to collect all 𝑁𝑁 of these candies. That is of course quite impossible since the number candies 
carried by any candy store is random (and with lots of repeats), and no store can carry anywhere 
near even 10 million candies. 
 
However, the candy manufacturer has made the task easier. If anyone can collect all candies 
numbered sequentially from 1 to 𝑀𝑀 where 𝑀𝑀 <  𝑁𝑁 and up to 100,000, the manufacturer will give 
him/her all the 𝑁𝑁 numbered candies. 
 
One particularly rich kid has hired 𝐿𝐿 helpers, where 𝑀𝑀 <  𝐿𝐿 <  𝑁𝑁 and up to 1,000,000. Each helper 
will  buy one candy from each of the 𝐿𝐿 candy store around the country. He hopes that by doing so he 
will be able to get all the candies numbered from 1 to 𝑀𝑀. 
 
As his helpers come back one by one with the candy they have bought, the rich kid has a hard time 
trying to figure out if he has all the candies numbered from 1 to 𝑀𝑀.  
 
Using what you have learned in CS2040, give an algorithm and required data structure(s) to help the 
rich kid answer the following query in better than 𝑂𝑂(𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑀𝑀) time: 
 
What is the largest numbered candy he has that is in an unbroken sequence from candy #1? If the 
largest numbered candy found in such a way is > 𝑴𝑴 just return 𝑴𝑴. If he does not have candy #1 
then return -1. 
 
You have to answer this query each time a candy is being brought back by a helper. So there will be 
𝐿𝐿 such queries (each to be answered in better than 𝑂𝑂(𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑀𝑀) time). Note that the candies 
need not be brought back in ascending order of candy number. 
 
E.g if a helper brings back candy #15 and the candies the rich kid has is currently 
1,2,3,4,5,6,7,20,21,23,25,26,27,30, then after the inclusion of candy #15, the largest numbered 
candy he has that is in an unbroken sequence from candy #1 is candy #7. 
 
You can perform a preprocessing step to help you answer the query. The preprocessing step must 
run in time better than O(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) time.  
 
Please analyze the time complexity of your solution. 

 

  
 

 

Since preprocessing must be better than O(NlogN) time and each query must be answered in better 
than O(logN) time we cannot have a solution using AVL to store all N candies. 
 
 
Algorithm 1: Preprocessing O(MlogM) + answering query O(logM) time 
 
In this solution instead of storing what candies the rich kid has, store what he does not have! 
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Preprocessing: Create an AVL tree T containing the numbers 1 to M.  O(MlogM)  
 
Answer query given candy j returned by helper:  
 
if (T.search(j) != null) 
    T.delete(j) 
if (T.findMin() == 1) // still don’t have candy 1 
    return -1 
else 

return min(100000, T.findMin()-1) // rich kid has every candy from  1 to (smallest value in T)-1 
 
 

 
alternative answer 1: 
 
Amortized O(1) per query solution, no preprocessing, O(L) space 
 
Since we are only interested in a consecutive sequence of candies starting from candy 1, after each candy is 
added, we try to ‘extend’ the longest consecutive sequence starting from 1 by as much as we can. We can use 
a hash table / array to maintain the current collection of candies we have, so that we can check whether we 
have a certain candy quickly when we try to extend our consecutive sequence. The pseudocode is shown 
below: 

 
The for-loop runs for O(L) iterations. Note that over the O(L) iterations of the for loop, the while-loop runs for 
O(L) iterations in total, because if L candies are added to our collection, the longest sequence of consecutive 
candies that we can obtain starting from candy 1 cannot end further than candy L. Since the while-loop runs 
for O(L) iterations in total across O(L) iterations of the for-loop, each query can be answered in O(1) time on 
average. 
 
O(1) per query solution, no preprocessing, O(L) space. 
 
Suppose that currently, we have the following candies in our collection: 
 
1 2 3 4 5 6 7 10 11 12 13 14 25 26 27 114 115 116 
 
We can treat the candies as a collection of intervals, where a sequence of consecutive candies form a single 
interval. For example, in the collection above, we have the interval [1, 7] (since we have all the candies from 1 
to 7), [10, 14], [25, 27], [114, 116]. 
 
Whenever we get a query, a new candy is added to our collection. When a new candy is added to our 
collection, there are four different cases that might occur: 
 

Let H be a hash table, initially empty 
Let A[i] denote the candy added in the ith query 
cur_max = 0 
 
for i = 1 to L 
    H.insert(A[i]) 
    while H.contains(cur_max + 1) 
        cur_max += 1 
    if cur_max == 0 
        print -1 
    else 
        print cur_max  
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1. The new candy can be ‘merged’ into an interval on its right 
For example, suppose that currently, we have the candies 5 6 7 8 in our collection, which means we 
have the interval [5, 8]. If candy 4 is added, we can ‘merge’ this candy into the interval to its right 
starting with 5, to obtain a new interval [4, 8]. 
 

2. The new candy can be ‘merged’ into an interval to its left 
For example, suppose that currently, we have the candies 2 3 4 5 in our collection, which means that 
we have the interval [2, 5]. If candy 6 is added, we can ‘merge’ this candy into the interval on its left 
ending with 5, to obtain a new interval [2, 6]. 
 

3. The new candy can be ‘merged’ into both the intervals on its left and right 
For example, suppose that currently, we have the candies 1 2 3 5 6 7 in our collection, which means 
that we have the intervals [1, 3] and [5, 7]. If candy 4 is added, we can ‘merge’ this candy into the 
interval on its left ending with 3 and the interval to its right starting with 5, to obtain a new interval 
[1, 7]. 
 

4. The new candy cannot be merged with any of the existing intervals 
For example, suppose that currently, we have the candies 2 3 4 5 6 10 11 12 in our collection, which 
means that we have the intervals [2, 6] and [10, 12]. If candy 8 is added, we cannot merge this candy 
with any of the existing intervals, so we will create a new singleton interval [8, 8]. This means that 
after candy 8 is added, we have three intervals [2, 6], [8, 8] and [10, 12]. 

 
So, we are interested in maintaining a collection of intervals, and for every query where a new candy is added 
to our collection, we will either add a new interval to our collection of intervals, or merge this candy with 
either one or two of the existing intervals as shown in the cases above. This can be done efficiently using a 
hash table (or actually, even an array) in O(1) time. 
 
The hash table solution will be described here. The array solution is analogous. 
 
We maintain three hash tables. The first hash table maps the start of an interval to the end of an interval, so it 
contains (start of interval ⇒ end of interval) key-value pairs. The second hash table maps the end of an interval 
to the start of an interval, so it contains (end of interval ⇒ start of interval) key-value pairs. The third hash 
table helps us to ignore duplicate candies. For each query, when a new candy is added, we try to merge this 
new candy with an existing interval according to one of the four cases above by manipulating the entries in the 
two hash tables.  
To output the answer to a query, we output the end of the interval that starts with candy 1, or -1 if such an 
interval does not exist. 
The pseudocode is shown below: 
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Let H1 be a hash table containing (start of interval ⇒ end of  i nt er val )  key-value pairs 
Let H2 be a hash table containing (end of interval ⇒ st ar t  of  i nterval) key-value pairs 
Let H3 be a hash table containing integers 
Let A[i] denote the candy added in the ith query 
 
for i = 1 to L 
    if H3.contains(A[i]) // duplicate candy 
        continue 
    if H1.contains(A[i] + 1) and !H2.contains(A[i] - 1) // Case 1 
        // First obtain the interval that we are going to merge with 
        start = A[i] + 1 
        end = H1.get(A[i] + 1) 
        // Delete this interval from both H1 and H2 
        H1.remove(start) 
        H2.remove(end) 
        // Add the new interval into both H1 and H2 
        H1.add(A[i], end) 
        H2.add(end, A[i]) 
    else if H2.contains(A[i] - 1) and !H1.contains(A[i] + 1) // Case 2 
        // First obtain the interval that we are going to merge with 
        end = A[i] - 1 
        start = H2.get(A[i] - 1) 
        // Delete this interval from both H1 and H2 
        H1.remove(start) 
        H2.remove(end) 
        // Add the new interval into both H1 and H2 
        H1.add(start, A[i]) 
        H2.add(A[i], start) 
    else if H1.contains(A[i] + 1) and H2.contains(A[i] - 1) // Case 3 
        // First obtain the two intervals that we are going to merge with 
        start1 = A[i] + 1 
        end1 = H1.get(A[i] + 1) 
        end2 = A[i] - 1 
        start2 = H2.get(A[i] - 1) 
        // Delete both intervals from both H1 and H2 
        H1.remove(start1) 
        H1.remove(start2) 
        H2.remove(end1) 
        H2.remove(end2) 
        // Add the new interval into both H1 and H2 
        H1.add(start2, end1) 
        H2.add(end1, start2) 
    else // Case 4 
        // Add a singleton range 
        H1.add(A[i], A[i]) 
        H2.add(A[i], A[i]) 
 
    // Insert into H3 for tracking duplicate candies 
    H3.insert(A[i]) 
 
    // Answer the query 
    if H1.contains(1) 
        print H1.get(1) 
    else 
        print -1 

 
For every query, we do a constant number of insertions, finds and deletions to a hash table. Hence, every 
query can be answered in O(1) time 
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alternative answer 2: 
 
O(α(L)) per query solution, O(L) space 
 
Suppose that currently, we have the following candies in our collection: 
 
1 2 3 4 5 6 7 10 11 12 13 14 25 26 27 114 115 116 
 
Let every consecutive sequence form a set of candies. So in our collection above, there are four sets of 
candies: {1,2,3,4,5,6,7}, {10, 11, 12, 13, 14}, {25, 26, 27}, {114, 115, 116}. 
 
At each query, a new candy is added to our collection. This may cause two sets to be merged together, if this 
new candy links up two initially disjoint consecutive sequences. For example, if we have the following candies 
in our collection initially: 3 4 5 6 8 9 10 11, with two sets {3, 4, 5, 6} and {8, 9, 10, 11}, and if candy 7 is added, 
then these two sets will be merged into one combined set {3, 4, 5, 6, 7, 8, 9, 10, 11}. 
 
After every query, we want to report the length of the longest consecutive sequence of candies starting from 
candy 1. Observe that this is effectively that largest candy in the same set as candy 1. Note that after two sets 
are merged together (as described in the paragraph above), the length of the longest consecutive sequence of 
candies starting from candy 1 cannot decrease. So, we will try to maintain the maximum candy number for 
every set, and update this maximum when two sets are merged. 
 
This suggests a solution using UFDS. Initially, we place every candy in a separate set. When we receive a new 
candy, we try to merge it with the set containing the candy on its left and right, if the sets exist, and update 
the value of the maximum candy in the set. After every query, we output the value of the largest candy in the 
same set as candy 1. The pseudocode is shown below. Modifications to the UFDS data structure are shown in 
blue. 
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Let par[1..L] be an array of integers (parent array for UFDS) 
Let rank[1..L] be an array of integers (rank array for UFDS) 
Let max_candy[1..L] be an array of integers (we maintain the candy  
with the largest value in each set here) 
Let has_candy[1..L] be an array of booleans (this is to track if we already  
have a certain candy) 
Let A[i] denote the candy added in the ith query 
 
function findSet(x) 
    if par[x] == x 
        return x 
    return par[x] = findset(par[x]) 
 
function sameSet(x, y) 
    return findSet(x) == findSet(y) 
 
function mergeSet(x, y) 
    x = findSet(x) 
    y = findSet(y) 
    if x == y 
        return 
    if rank[x] > rank[y] 
        par[y] = x 
        max_candy[x] = max(max_candy[x], max_candy[y]) 
    else 
        par[x] = y 
        if rank[x] == rank[y] 
            rank[y]++ 
        max_candy[y] = max(max_candy[x], max_candy[y]) 
 
// UFDS initialisation 
for i = 1 to L 
    par[i] = i 
    rank[i] = 0 
    max_candy[i] = i 
    has_candy[i] = false 
 
for i = 1 to L 
    if A[i] > L 
        // if a candy has value higher than L, then we just ignore it 
        // since it is impossible to get a consecutive sequence of candies 
        // higher than L 
        continue 
    if has_candy[A[i]] 
        // duplicate candy 
        continue 
    has_candy[A[i]] = true 
    // some array out of bounds checking here omitted 
    // since they’re not essential to the solution 
    if has_candy[A[i-1]] 
        mergeSet(A[i], A[i-1]) 
    if has_candy[A[i+1]] 
        mergeSet(A[i], A[i+1]) 
 
    if has_candy[1] 
        print max_candy[findSet(1)] 
    else 
        print -1 
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For each of the L candies, a constant number of UFDS operations are performed, so each query is answered in 
O(α(L)) time. The UFDS takes O(L) space. 
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9. Time Traveler [25 marks] 

Mark is an officer from the Bureau of Time Traveling Law Enforcement (BOTTLE for short).  
He has a device which allows him to go forward in time in order to apprehend time traveling 
criminals.  Starting from the present day which we will call day 0, Mark can use his device to jump 
forward in time by a certain number of days.  

Each time he uses the device he can choose a value from a set 𝐿𝐿 (|𝐿𝐿| >  0) containing the 
number of days to jump. For example, given 𝐿𝐿 = {2, 5, 7, 10, 30}, Mark can choose 7 which means he 
will jump forward by 7 days into the future. He can make multiple jumps by doing so, however there 
is a maximum range of the number of days he can go forward to which is given by the value 𝑇𝑇 − 1. 
Once he goes past 𝑇𝑇 − 1, he will simply wrap around to day 0 and continue from there. For example, 
given 𝐿𝐿 as above, if 𝑇𝑇 = 20, and he chooses 30, after he goes past day 20 in the future he will simply 
return to day 0 and continue up to day 10 in the future which is where he will find himself.   

Now choosing each value from 𝐿𝐿 to make a jump requires a certain amount of chrono-
energy and each value in 𝐿𝐿 has an associated amount of chrono-energy which is represented in 
another set M. For example, again given 𝐿𝐿 = {2, 5, 7, 10, 30}, and M = {4,7,10,20,40}, if Marks 
chooses 5 then he will need to use 7 chrono-energy to jump forward 5 days. If he chooses 10 then he 
will need to use 20 chrono-energy to jump forward 10 days. However, the time machine can only 
store 𝑋𝑋 units of chrono-energy thus Mark can only make a limited number of jumps before he has to 
stop. 

Given the set 𝐿𝐿, the set 𝑀𝑀, the maximum range 𝑇𝑇, the value 𝐹𝐹 which is number of day in the 
future he wants to arrive at from current day (day 0) and 𝑋𝑋 the amount of chrono-energy the time 
machine starts with, model the problem as a graph problem and answer the query JumpPossible(L, 
M,T,F,X)  which will return true if he can make a series of jump to arrive at day 𝐹𝐹 without running 
out of chrono-energy (he can hit 0 when he arrive at day 𝐹𝐹), or false otherwise. 

For example, if 𝐿𝐿 = {2, 5, 7, 10, 30}, 𝑀𝑀 = {4,7,10,20,40}, 𝑇𝑇 = 20: 
Now if 𝐹𝐹 = 10, 𝑋𝑋 = 8, then there is no way for him to arrive 10 days in the future, since 

making 1 jump of 10 requires 20 chrono-energy, making 5 jumps of 2 require 5*4 = 20 chrono-
energy, making 1 jump of 30 which will wrap around and land him at day 10 will require 40 chrono-
energy. Any other combinations will also require too much chrono-energy. 

Now if 𝐹𝐹 = 17, 𝑋𝑋 = 31 then one possible way for him to jump forward 17 days is by making 
the series of jumps: 7,10 which cost only 30 chrono-energy.   
 
a)  Model the graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) to answer JumpPossible(L,M,T,F,X) 
 
      i.) What do the vertices 𝑉𝑉 represent and what information will you store in a vertex?  [2 marks] 
 
 Vertices represent the number of days that Mark can jump to in the future. There is a vertex for  
 each number from 0 to T-1  
 
 ii.) What do the edges 𝐸𝐸 represent and what information will you store in an edge?  [2 marks] 
 
 Edges are directed and for any vertex pair x,y there is an edge from x to y if there is an i such that  
 y = (x+L[i])%T. The weight of the edge is M[i]. Ignore edges that point back to the vertex itself or  
 multiple edges pointing to same vertex y (for these simply use the smallest weighted edge).  
 

 iii.) Is this a directed or undirected graph?  [1 mark] 

Actually it can have a combination of directed and undirected/bidirected (e. g if you can link vertex 
i to vertex T-1, meaning T-1-i is in L then (T-1+(T-1-i))%T will get you back i so there is also an edge 
from T-1 to i. SO EVERYONE GETS 1 MARK FOR THIS QUESTION IF YOU GIVE AN ANSWER 
(DIRECTED OR UNDIRECTED).   
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 iv.) What is the best graph DS to store this graph to answer JumpPossible(L,M,T,F,X)?  [1 mark] 

 Adjacency List. 

b) Now using the graph in a) give an algorithm for JumpPossible(L,M,T,F,X) that runs in time better 
than 𝑂𝑂(|𝐿𝐿| ∗ 𝑇𝑇2). [10 marks] 

Simply run original or modified dijkstra on the graph modelled in a) using vertex 0 as the source 
vertex. If D[F] != -1 && D[F] <= X then return true else return false 
 
# of vertices = T 
# of edges = O(|L|*T) 
Thus time for djikstra algo = O((T+|L|*T)logT) = O(|L|*TlogT) which is better than O(|L|*T^2)  
 
 
 
 
 
 
 
 
 
 
 
c) Mark has modified his time machine so that in his series of time travel jumps to reach a certain day 
in the future, he can at any point and only once pick one day from a set 𝐿𝐿’ of days (L’ ∩ L = ∅ and 
|𝐿𝐿’| ≤  |𝐿𝐿| ), that he can jump forward by without using any chrono-energy. Given this new 
modification, detail any changes to the graph in a) and give an algorithm for JumpPossible(L,L’,M,T,F,X) 
that will still run in time better than 𝑂𝑂(|𝐿𝐿| ∗ 𝑇𝑇2). [*9 marks] 

For example, if 𝐿𝐿 = {2, 5, 7, 10, 30}, 𝐿𝐿′ = {1, 4, 8}, 𝑀𝑀 = {4,7,10,20,40}, 𝑇𝑇 = 20: 

If 𝐹𝐹 = 12, 𝑋𝑋 = 8 then one possible way to jump 12 days into the future is to first make a jump of 2 for 4 chrono-
energy followed by a free jump of 8, then followed by another jump of 2 for 4 chrono-energy to reach 12 days 
in the future. In all, this use exactly 8 chrono-energy. However, Mark cannot make a free jump of 4 followed by 
another free jump of 8 to reach 12 days, since he can only do a free jump once in his series of jumps. 

 

1.) Make a copy of G call it G’  can be done in O(|L|+T) time on adjacency list. Let the copy of a 
vertex x in G be x’ in G’.  
 
2.) For each vertex x in G, there is a directed edge to a vertex y in G’, if there is an i’ such that y = 
(x+L’[i’])%T. The weight of the edge is 0.  can be done in O(T^2) time  
 
3.) Thus we have a 2 layer graph consisting of G and G’ with possible edges going from G to G’ but 
not from G’ to G. 
 
4.) Now again run modified/original djikstra’s algorithm from vertex 0 in G. 
      If (D[F] != -1 && D[F] <= X) || (D[F’] != -1 && D[F’] <= X) return true else return false 
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Time complexity is still O(|L|*TlogT) since # of vertices = O(2*T) = O(T) and # of edges = 
O(2|L|T+|L’|T) = O(|L|T) 
 
Alternative way: 
Another way is to note that the free jump can actually be used anywhere because of the modulo (%) 
operation for example if a jump of 2 days, 2 day and 4 days will work (and 4 is the free jump) then 
4,2,2 or 2,4,2 or any combination of the days will lead to the desired destination. Thus we can simply 
call modified Djikstra on the graph in a) and check for all vertices F’ = F-k’ where k’ is in L’ if there 
exist D[F’] <= X. If there is then output true else output false.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

~~~ END OF PAPER ~~~ 
 


