CS2030

A city is built up of equally spaced horizontal streets and vertical avenues that run
perpendicular to each other. Users of a city navigation application comprises of drivers
and pedestrains. Each user can find the distance between itself and another user.

Suppose that a user (A) is situated at street x4 and avenue 34, and another user (B) is
situated at street xp and avenue yg.

s sttt e S

B R e e e

B s et e S

S+ (B)-—+..

Bt S O

e If a driver is situated at (A), then the distance between (A) and (B) is computed
using the city-block distance

lza — x| + lya — ys|
In the above example, the distance is 5.

e If a pedestrian is situated at (A), then the distance between (A) and (B) is
computed using the Euclidean distance

V(za—2p)? + (ya — yp)?
In the above example, the distance is v/13.
Define appropriate interfaces/classes following the sample run below:

jshell> Stream.<User>of (new Driver(l, 1), new Pedestrian(4, 5)).
..> map(user -> new Driver(3, 2).distanceTo(user)).
...> toList ()

$.. ==> [3.0, 4.0]

jshell> Stream.<User>of (new Driver(1l, 1), new Pedestrian(4, 5)).
..> map(user -> new Pedestrian(3, 2).distanceTo(user)).
...> tolList()

$.. ==> [2.23606797749979, 3.1622776601683795]

Note the following:

e your solution should demonstrate the “Tell-Don‘t-Ask” principle;

e your solution should be extendable to other types of users with different distance
computations based on offsets z4 — zp and y4 — yp



CS2030

1. [4 marks] Write the interface/class User, as well as any other dependencies.

2. [2 marks] Write the interfaces/classes for Driver followed by Pedestrian, as well as
any other dependencies.

You need not include import statements in your answers above.



CS2030

You are given a Count context that keeps count of the number of function mappings

where the input is different from the output.

import java.util.function.Function;

class Count<T> {

private final T value;
private final int count;

private Count(T value, int count) {
this.value = value;
this.count = count;

static <T> Count<T> of (T value) {
return new Count<T>(value, 0);

<R> Count<R> map(Function<? super T, ? extends R> mapper) {

R r = mapper.apply(value);
if (r.equals(value)) {

return new Count<R>(r, count);

¥

return new Count<R>(r, count + 1);

public String toString() {
return value + ":" + count;

}

jshell> Count.of (5)

$..

jshell> Stream.<Function<Integer,Integer>>of(x -> x * 1, x -> x + 1).
...> map(f -> Count.of(5) .map(£f)).toList()
$..

==> 5:0

==> [5:0, 6:1]



CS2030

3. [3 marks] Write the flatMap method to aggregate the counts following the sample
run below:

jshell> Count<Integer> count = Count.of(5) .map(x -> x + 1)
count ==> 6:1

jshell> count.flatMap(x -> Count.of (x))
$.. ==> 6:1

jshell> count.flatMap(x -> Count.of (x) .map(y -> y * 1))
$.. ==> 6:1

jshell> count.flatMap(x -> Count.of(x).map(y —> y + 1))
$.. ==>T7:2

4. [2 marks| Write the equals method to facilitate the testing of functor and monad
laws.

5. [3 marks] Write jshell tests to demonstrate whether the functor and monad laws
are obeyed. You should either

e write all relevant tests to show that functor and monad laws are obeyed; or

e write one test to show that not all functor/monad laws obeyed.



CS2030

6. [3 marks] Given a quadratic equation (i.e. polynomial equation of degree 2) of the

form:

az? +

b*4+c=0

The solution of the equation can either be

e two real roots given by
—b

+ v/b? — dac

if the discriminant b? — 4ac > 0;

e one real root ;—; if the discriminant

2a

b? — 4ac = 0; or

e 1o real root if the discriminant b2 — 4ac < 0.

Complete the following method findRealRoots(double a, double b, double c)
that takes in the coefficients a, b and ¢ of the quadratic equation a?x + bz + ¢ == 0,

and returns a List<Double> comprising

jshell> findRealRoots(4,19,-5) //
$.. ==> [-5.0, 0.25]

jshell> findRealRoots(-3,6,-3) //
$.. ==> [1.0]

jshell> findRealRoots(4,12,10) //
$.. =[]

ANSWER:

List<Double> findRealRoots(double
return Stream.<Double>of (Math.

Include the complete method definition
lowing sample run should be helpful.

jshell> Double d = Math.sqrt(-1)
d ==> NaN

jshell> d.isNaN()
$.. ==> true

of the roots of the equations as shown below:

two real roots

one real root

no real root

a, double b, double c) {
sqrt(b*b - 4 *x a * c))

of findRealRoots in your answer. The fol-



CS2030

This question follows from question 6.

Suppose the coefficients of the quadratic equation a, b and ¢ takes some time to
compute, but nonetheless computed independently from each other. Write an
overloaded findRealRoots method that takes no arguments so that it takes minimal
time to obtain the real roots of the equation.

Note that the methods a(), b() and c() are available that each returns the
corresponding double coefficient value after some time.

List<Double> findRealRoots() {
// Make use of methods a(), b(), c() that returns the coefficients.
}

You may make use of the overloaded method in question 6.

7. [3 marks| Define findRealRoot () so that it makes use of the CompletableFuture
context.

8. [3 marks] Define findRealRoot () so that it makes use of the Stream context.



CS2030

In this course, you are well aware that Java does not provide a proper immutable list;
the only list that seems immutable is the one created using List.of where the list
update methods (e.g. add) can be invoked, but throws an exception as a side effect. As
such, much of our list processing is done via Java streams, but these do not come with
the usual List methods like add, get, remove, set, etc.

In this question, we shall create our own ImList which encapsulates a Stream (elems)
and the number of elements (size). You are given the ImList class below:

import java.util.List;

import java.util.Comparator;

import java.util.Optional;

import java.util.stream.Stream;
import java.util.function.Predicate;
import java.util.function.Function;
import java.util.function.Consumer;

record Entry<E>(int index, E elem) {}

class ImList<E> {
private final Stream<Entry<E>> elems;
private final int size;

private ImList() {
this.elems = Stream.<Entry<E>>o0f();
this.size = 0;

static <E> ImList<E> of() {
return new ImList<E>();

int size() {
return this.size;

boolean isEmpty() {
return this.size() == 0;

3

void forEach(Consumer<? super E> consumer) {
this.elems.forEach(x -> consumer.accept(x.elem()));

}



CS2030

The Entry record (or class) allows us to track the correspondence between an element
with its index. Any violation of the following will result in no marks for the question.

e only the following generic Stream methods are allowed:

— factory methods of and two-argument iterate
— transformation methods map and flatMap

— limit, filter, findFirst, sorted
e do not include any other import statements.
9. [3 marks] Write a private constructor that takes in an appropriate Stream and a size.

Next, write the factory method of that takes in the list of elements as a List and
creates the corresponding ImList.

jshell> ImList.<Integer>of(List.of(1,2,3))
...> forEach(x -> System.out.print(x))
1

3
jshell> ImList.<Number>of (List.<Integer>of(1,2,3))

...> forEach(x -> System.out.print(x))
1



CS2030

In this course, you are well aware that Java does not provide a proper immutable list;
the only list that seems immutable is the one created using List.of where the list
update methods (e.g. add) can be invoked, but throws an exception as a side effect. As
such, much of our list processing is done via Java streams, but these do not come with
the usual List methods like add, get, remove, set, etc.

In this question, we shall create our own ImList which encapsulates a Stream (elems)
and the number of elements (size). You are given the ImList class below:

import java.util.List;

import java.util.Comparator;

import java.util.Optional;

import java.util.stream.Stream;
import java.util.function.Predicate;
import java.util.function.Function;
import java.util.function.Consumer;

record Entry<E>(int index, E elem) {}

class ImList<E> {
private final Stream<Entry<E>> elems;
private final int size;

private ImList() {
this.elems = Stream.<Entry<E>>o0f();
this.size = 0;

static <E> ImList<E> of() {
return new ImList<E>();

int size() {
return this.size;

boolean isEmpty() {
return this.size() == 0;

3

void forEach(Consumer<? super E> consumer) {
this.elems.forEach(x -> consumer.accept(x.elem()));

}



CS2030

The Entry record (or class) allows us to track the correspondence between an element
with its index. Any violation of the following will result in no marks for the question.

e only the following generic Stream methods are allowed:

— factory methods of and two-argument iterate
— transformation methods map and flatMap

— limit, filter, findFirst, sorted
e do not include any other import statements.

10. [4 marks] Write the addA11l method that takes in an ImList and returns a new
ImList that concatenates this new immutable list to the end of the existing one.

Next, write the add method that takes in an element and calls the addA11 method.

jshell> ImList<Number> nums = ImList.<Number>of (List.<Number>of (1, 2))
nums ==> ImList@..

jshell> nums.addAll(ImList.<Integer>of (List.<Integer>of(3, 4))).
...> forEach(x -> System.out.print(x))

DWW N -

10



CS2030

In this course, you are well aware that Java does not provide a proper immutable list;
the only list that seems immutable is the one created using List.of where the list
update methods (e.g. add) can be invoked, but throws an exception as a side effect. As
such, much of our list processing is done via Java streams, but these do not come with
the usual List methods like add, get, remove, set, etc.

In this question, we shall create our own ImList which encapsulates a Stream (elems)
and the number of elements (size). You are given the ImList class below:

import java.util.List;

import java.util.Comparator;

import java.util.Optional;

import java.util.stream.Stream;
import java.util.function.Predicate;
import java.util.function.Function;
import java.util.function.Consumer;

record Entry<E>(int index, E elem) {}

class ImList<E> {
private final Stream<Entry<E>> elems;
private final int size;

private ImList() {
this.elems = Stream.<Entry<E>>o0f();
this.size = 0;

static <E> ImList<E> of() {
return new ImList<E>();

int size() {
return this.size;

boolean isEmpty() {
return this.size() == 0;

3

void forEach(Consumer<? super E> consumer) {
this.elems.forEach(x -> consumer.accept(x.elem()));

}



CS2030

The Entry record (or class) allows us to track the correspondence between an element
with its index. Any violation of the following will result in no marks for the question.

e only the following generic Stream methods are allowed:

— factory methods of and two-argument iterate
— transformation methods map and flatMap

— limit, filter, findFirst, sorted
e do not include any other import statements.
11. [4 marks] Write the get method, followed by the index0f method:
e Optional<E> get(int index)

e int index0f(Object obj)

jshell> ImList.<Number>of (List.of(1, 2)).get(0)
$.. ==> Optionall[1]

jshell> ImList.<Number>of(List.of(1l, 2)).get(2)
$.. ==> Optional.empty

jshell> ImList.<Number>of(List.of (1, 2)).index0f(2)
$.. ==>1

jshell> ImList.<Number>of(List.of (1, 2)).index0f(3)
$.. ==> -1

Since both get and indexOf involves searching the list, first define a private find
method that takes in an appropriate Predicate and returns an Optional value. Next,
define the get and index0f methods by making use of the find method.

It is also interesting to note that since Stream can only be operated once, encap-
sulating a Stream does not allow us to repeatedly invoke get and index0f on the
same ImList. This is fine as we can always replace Stream with our own version of
the infinite list IFL.

11



CS2030

In this course, you are well aware that Java does not provide a proper immutable list;
the only list that seems immutable is the one created using List.of where the list
update methods (e.g. add) can be invoked, but throws an exception as a side effect. As
such, much of our list processing is done via Java streams, but these do not come with
the usual List methods like add, get, remove, set, etc.

In this question, we shall create our own ImList which encapsulates a Stream (elems)
and the number of elements (size). You are given the ImList class below:

import java.util.List;

import java.util.Comparator;

import java.util.Optional;

import java.util.stream.Stream;
import java.util.function.Predicate;
import java.util.function.Function;
import java.util.function.Consumer;

record Entry<E>(int index, E elem) {}

class ImList<E> {
private final Stream<Entry<E>> elems;
private final int size;

private ImList() {
this.elems = Stream.<Entry<E>>o0f();
this.size = 0;

static <E> ImList<E> of() {
return new ImList<E>();

int size() {
return this.size;

boolean isEmpty() {
return this.size() == 0;

3

void forEach(Consumer<? super E> consumer) {
this.elems.forEach(x -> consumer.accept(x.elem()));

}



CS2030

The Entry record (or class) allows us to track the correspondence between an element
with its index. Any violation of the following will result in no marks for the question.

e only the following generic Stream methods are allowed:

— factory methods of and two-argument iterate

— transformation methods map and flatMap

— limit, filter, findFirst, sorted

e do not include any other import statements.

12. [6 marks] Write the following methods in order:

e ImList<E> remove(int index)

e ImList<E> set(index index, E elem)

e ImList<E> sort(Comparator<? super E> cmp)

jshell>
L

2

jshell>
>

2

jshell>
L2

jshell>
L
L2

10

20

jshell>
L

ImList.<Integer>of (List.of (1, 2)).remove(0).
forEach(x -> System.out.println(x))

ImList.<Integer>of (List.of(1, 2)).remove(0).remove(l).
forEach(x -> System.out.println(x))

ImList.<Integer>of (List.of (1, 2)).remove(0).remove(0).
forEach(x -> System.out.println(x))
ImList.<Integer>of (List.of(1, 2)).

set(0,10) .set(1,20) .set(2,30).
forEach(x -> System.out.println(x))

ImList.<Integer>of (List.of(1l, 2)).sort((x,y) -> y - x).
forEach(x -> System.out.println(x))

— END OF PAPER — 12



