
$.. ==> [2.23606797749979, 3.1622776601683795]

Note the following:

·

your solution should demonstrate the "Tell-Don't-Ask" principle;

your solution should be extendable to other types of users with different distance

computations based on offsets xA - XB and yA - ув

2

CS2030

A city is built up of equally spaced horizontal streets and vertical avenues that run
perpendicular to each other. Users of a city navigation application comprises of drivers

and pedestrains. Each user can find the distance between itself and another user.

Suppose that a user (A) is situated at street A and avenue yA, and another user (B) is

situated at street xB and avenuе ув.
:

(A) + +

+-

:

+

+- (B)--+..

: : :

이

•

If a driver is situated at (A), then the distance between (A) and (B) is computed
using the city-block distance

|XA-XB+ YA - Yв

In the above example, the distance is 5.

If a pedestrian is situated at (A), then the distance between (A) and (B) is

computed using the Euclidean distance

√(XA- xB)2 + (ул — ув)2

In the above example, the distance is √13.

Define appropriate interfaces/classes following the sample run below:

jshell> Stream.<User>of(new Driver(1, 1), new Pedestrian(4, 5)).

...> map(user -> new Driver(3, 2).distanceTo(user)).

...> toList())

$.. ==> [3.0, 4.O]

jshell> Stream.<User>of(new Driver(1, 1), new Pedestrian(4, 5)).
...> map(user -> new Pedestrian(3, 2).distanceTo(user)).
...> toList()



3

CS2030

1. [4 marks] Write the interface/class User, as well as any other dependencies.

2. [2 marks] Write the interfaces/classes for Driver followed by Pedestrian, as well as

any other dependencies.

You need not include import statements in your answers above.



CS2030

You are given a Count context that keeps count of the number of function mappings
where the input is different from the output.

import java.util.function.Function;

class Count<T> {

private final T value;

private final int count;

private Count(T value, int count) {

this.value = value;

this.count = count;

}

static <T> Count<T> of(T value) {

return new Count<T>(value, 0);

}

<R> Count<R> map(Function<? super T, ? extends R> mapper) {

R r = mapper.apply(value);

if (r.equals(value)) {

return new Count<R>(r, count);

}

return new Count<R>(r, count + 1);

}

public String toString() {

return value + ":" + count;

}

}

jshell> Count.of(5)

$.. ==> 5:0

jshell> Stream.<Function<Integer,Integer>>of(x -> x * 1, x -> x + 1).

...> map(f -> Count.of(5).map(f)).toList()

$.. ==> [5:0, 6:1]

4



CS2030

3. [3 marks] Write the flatMap method to aggregate the counts following the sample
run below:

jshell> Count<Integer> count = Count.of(5).map(x -> x + 1)

count ==> 6:1

jshell> count.flatMap(x -> Count.of(x))

$.. ==> 6:1

jshell> count.flatMap(x -> Count.of(x).map(y -> y * 1))

$.. ==> 6:1

jshell> count.flatMap(x -> Count.of(x).map(y -> y + 1))

$.. ==> 7:2

4. [2 marks] Write the equals method to facilitate the testing of functor and monad
laws.

5. [3 marks] Write jshell tests to demonstrate whether the functor and monad laws
are obeyed. You should either

• write all relevant tests to show that functor and monad laws are obeyed; or

• write one test to show that not all functor/monad laws obeyed.

5



d ==> NaN

jshell> d.isNaN((
$.. ==> true

6

6.

CS2030

[3 marks] Given a quadratic equation (i.e. polynomial equation of degree 2) of the

form:

ax² + b +c = 0

The solution of the equation can either be

two real roots given by
-b± √b2 - 4ас

2a

if the discriminant b2 - 4ac >0;

one real root if the discriminant 12 - 4ac = 0; or
2a

no real root if the discriminant b2- 4аc < 0.

Complete the following method findRealRoots (double a, double b, double с)

that takes in the coefficients a, b and c of the quadratic equation a²x + bx + c == 0,

and returns a List<Double> comprising of the roots of the equations as shown below:

jshell> findRealRoots(4,19,-5) // two real roots

$.. ==> [-5.0, 0.25]

jshell> findRealRoots(-3,6,-3) // one real root
$.. ==> [1.0]

jshell> findRealRoots (4,12,10) // no real root
$.. ==> []

ANSWER:

List<Double> findRealRoots (double a, double b, double c)

return Stream.<Double>of(Math.sqrt(b*b - 4 * a * c))

{

}

Include the complete method definition of findRealRoots in your answer. The fol-
lowing sample run should be helpful.

shel1> Dou d = Math sar




















