
CS2030

National University of Singapore

SCHOOL OF COMPUTING

CS2030 — PROGRAMMING METHODOLOGY II
(Semester 1: AY2018/2019)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. This assessment paper consists of FIVE(5) questions and comprises
SIXTEEN(16) printed pages, including this page.

2. Answer ALL questions in the spaces provided. You may use pen or pencil.

3. This is an OPEN BOOK assessment. The maximum mark is 80.

4. Calculators are allowed, but not electronic dictionaries, notebooks, tablets, or other
computing devices.

5. Do not look at the questions until you are told to do so.

6. Please write your Student number below. Do not write your name.

This portion is for examiner’s use only.

Question Marks Remarks

Q1 /16

Q2 /16

Q3 /16

Q4 /16

Q5 /16

Total /80

1

CS2030

1. [16 marks] Consider the following Java implementation for a banking application
that facilitates the transfer of money between two accounts.

import java.util.Scanner;

class BankApp {

static void transfer(Account source, Account target, double amount) {

source.withdraw(amount);

target.deposit(amount);

}

static double getAmount() {

System.out.print("Enter amount to transfer: ");

return new Scanner(System.in).nextDouble();

}

public static void main(String[] args) {

Account s = getAccount();

Account t = getAccount();

double amt = getAmount();

transfer(s, t, amt);

System.out.println("Transfer successful");

}

// getAccount and other methods omitted

}

class Account {

private double balance;

Account(double balance) {

this.balance = balance;

}

void withdraw(double amount) {

this.balance = this.balance - amount;

}

void deposit(double amount) {

this.balance = this.balance + amount;

}

// other methods omitted

}

You may assume that the functionality for getting accounts to initiate the transfer has
been handled correctly. This question focuses only on the transfer of money
between two valid accounts.

2

CS2030

By employing good OOP design principles, rewrite the BankApp and Account classes
to include the following:

• Check that the transfer amount is greater than zero.

• Check that the transfer amount is within the balance of the withdrawal account.

• Ease of inclusion of different types of accounts, each with a specific withdrawal
limit. Include a SavingsAccount with a withdrawal limit of $1000.

• Terminate the transfer immediately for any violations above.

• Ensure that a deposit does not follow a failed withdrawal.

ANSWER:

3

CS2030

— BLANK PAGE — 4

CS2030

2. [16 marks] The following program shows a typical setup for a system that comprises
a console that handles the input/output, and the (business-)logic part of the system.

import java.util.Scanner;

class Console {

private String id;

private Logic logic;

Console(String id, Logic logic) {

this.id = id;

this.logic = logic;

}

void start() {

Scanner sc = new Scanner(System.in);

String command;

do {

System.out.print("Enter a command: ");

command = sc.next();

logic.invoke(command, this);

} while (!command.equals("exit"));

}

void feedback(String mesg) {

System.out.println(id + ": " + mesg);

}

}

class Logic {

void invoke(String command, Console console) {

// do something based on the command

console.feedback(command + " executed");

}

}

class Main {

public static void main(String[] args) {

Logic logic = new Logic();

Console console = new Console("main", logic);

console.start();

}

}

In particular, when a command is entered via the console, the logic component invokes
the command and initiates a feedback call to the console. In the above design, the
Console class is dependent on the Logic class (via the private instance field), while
the Logic class depends on the Console class (via the parameter in method invoke).

5

CS2030

This establishes a cyclic-dependency, which makes isolation and testing of individual
components difficult. A sample run of the above program is given in the following.

Enter a command: load

main: load executed

Enter a command: store

main: store executed

Enter a command: exit

main: exit executed

Redesign the system to remove the cyclic dependency while maintaining the feedback
call. Moreover, the system should facilitate the inclusion of other secondary consoles
that receives the same feedback as the primary console. A sample run is given below
where input is provided via the primary console, and feedback is provided to both
primary and secondary consoles.

Enter a command: load

primary: load executed

secondary: load executed

Enter a command: store

primary: store executed

secondary: store executed

Enter a command: exit

primary: exit executed

secondary: exit executed

ANSWER:

6

CS2030

— BLANK PAGE — 7

CS2030

— BLANK PAGE — 8

CS2030

3. [16 marks] Write a static method findMinMax with the signature

static Optional<MinMax> findMinMax(Stream<Integer> instream)

that takes a Stream of Integer values and finds both the maximum and minimum
values via the MinMax class given below.

class MinMax {

final int min, max;

public MinMax(int min, int max) {

this.min = min;

this.max = max;

}

@Override

public String toString() {

return min + ", " + max;

}

}

Take note of the following:

• An Optional<MinMax> empty instance is returned if the input stream is empty

• The steam pipeline should work if parallelized

• You are not allowed to use any Java collections

Using the following program fragment as an example

System.out.print("From range: ");

int from = (new Scanner(System.in)).nextInt();

System.out.print("To range: ");

int to = (new Scanner(System.in)).nextInt();

Stream<Integer> instream = IntStream

.rangeClosed(from, to)

.mapToObj(x -> Integer.valueOf(x));

System.out.println(findMinMax(instream));

the sample runs are:

• From range: -123

To range: 456

Optional[-123, 456]

• From range: -123

To range: -456

Optional.empty

9

CS2030

ANSWER:

import java.util.stream.Stream;

import java.util.Optional;

....

static Optional<MinMax> findMinMax(Stream<Integer> instream) {

10

CS2030

4. [16 marks] The following depicts a classic tail-recursive implementation for finding
the sum of values of n (given by

∑
n

i=0
i) for n ≥ 0.

static long sum(long n, long result) {

if (n == 0) {

return result;

} else {

return sum(n - 1, n + result);

}

}

In particular, the implementation above is considered tail-recursive because the re-
cursive function is at the tail end of the method, i.e. no computation is done after
the recursive call returns. Using an example, sum(100, 0) gives 5050. However, this
recursive implementation causes a java.lang.StackOverflowError error for large
values such as sum(100000, 0).

Although the tail-recursive implementation can be simply re-written in an iterative
form using loops, we desire to capture the original intent of the tail-recursive imple-
mentation using delayed evaluation via the Supplier functional interface.

We represent each recursive computation as a Compute<T> object. A Compute<T>

object can be either:

• a recursive case, represented by a Recursive<T> object, that can be recursed, or

• a base case, represented by a Base<T> object, that can be evaluated to a value
of type T.

As such, we can rewrite the above sum method as

static Compute<Long> sum(long n, long s) {

if (n == 0) {

return new Base<>(() -> s);

} else {

return new Recursive<>(() -> sum(n - 1, n + s));

}

}

Complete the program by writing the Compute, Base and Recursive classes. By mak-
ing use of a suitable client class Main, show how the “tail-recursive” implementation
is invoked.

11

CS2030

ANSWER:

— BLANK PAGE — 12

CS2030

— BLANK PAGE — 13

CS2030

5. [16 marks] Merge sort is a divide-and-conquer sorting technique that divides a list of
elements into two halves, and applies the method recursively to the sub-lists. Tradi-
tionally, this sub-division is applied until a sub-list of one element, and merging of the
sub-lists then takes place. However, the sub-list may be deemed small enough such
that applying a more conventional sorting technique will result in the list being sorted
more quickly. The figure below shows this case where sub-lists of two elements are
immediately sorted, so that merging can then take place.

In the context of concurrent programming, implement the above sorting technique on
a List of elements of a generic type T. Note the following:

• Set up a MergeSortTask as a RecursiveAction task from Java’s fork/join frame-
work. For example, merge-sorting a List of type Integer would be invoked as

MergeSortTask<Integer> task = new MergeSortTask<Integer>(integerList);

task.compute();

• Use List’s subList() method to divide the list.

List<E> subList(int fromIndex, int toIndex)

Returns a view of the portion of this list between the specified fromIndex,

inclusive, and toIndex, exclusive.

• Use Collections.sort() to sort a sufficiently small list. You may decide on a
suitable threshold on the length of the list.

public static <T extends Comparable<? super T>> void sort(List<T> list)

Sorts the specified list into ascending order, according to the natural

ordering of its elements. All elements in the list must implement the

Comparable interface.

• Abstract the merging of sub-lists as a separate merge method

void merge(List<T> list, List<T> leftHalf, List<T> rightHalf)

14

CS2030

ANSWER:

15

CS2030

— BLANK PAGE —
— END OF PAPER —

16

