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Write your answers in the space provided.

1. [16 marks] Implement the following using Java streams. Any explicit looping/recur-
sive implementations and data structures are strictly not allowed.

(a) [3 marks] Complete the method myCount that takes in a Stream<T> of finite
stream elements of generic type T, and returns the number of such elements. You
are not allowed to use the terminal operation count(). For example,

• myCount(Stream.of("abc", "xyz")) returns 2;

• myCount(Stream.of())) returns 0;

ANSWER:

public static <T> long myCount(Stream<T> stream) {

(b) [4 marks] Complete the method countRepeats that takes in a string of lowercase
letters and returns the number of occurrences of adjacent repeated letters. For
example,

• the string “mississippi” has three occurrences;

• the string “ssss” has one occurrence

Hint: The following String method might be useful:
char charAt(int index) — Returns the char value at the specified index.

ANSWER:

public static long countRepeats(String str) {
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(c) [6 marks] Complete the method variance that takes in an integer array of el-
ements and returns the variance of the elements. The variance of an array of xi

elements is defined as

σ
2 =

∑
n−1

k=0
(xk − µ)2

n− 1

where µ is the average of all n elements. For example,

• variance(IntStream.rangeClosed(1,6).toArray())

returns OptionalDouble[3.5];

• variance(IntStream.of().toArray())

returns OptionalDouble.empty;

ANSWER:

public static OptionalDouble variance(int[] data) {

(d) [3 marks] Complete the method reverse that takes in a String and returns the
reverse of the string while parallelizing the process.

public static String reverse(String str) {

return str.chars() // returns an IntStream of char values

3



CS2030

2. [6 marks] This question relates to the Discrete Event Simulator assignment.

Before the simulation starts, customers are assigned the inter-arrival time and service
time using the RandomGenerator object rng in the following manner:

List<Customer> customers = new ArrayList<>();

double now = 0;

for (int i = 0; i < numOfCustomers; i++) {

Customer customer = new Customer();

customer.setArrivalTime(now);

customer.setServiceTime(() -> rng.genServiceTime());

customers.add(customer);

now += rng.genInterArrivalTime();

}

Part of the Customer class is given below.

class Customer {

double serviceTime;

double arrivalTime;

void setArrivalTime(double arrivalTime) {

this.arrivalTime = arrivalTime;

}

void setServiceTime(double serviceTime) {

this.serviceTime = serviceTime;

}

double getArrivalTime() {

return this.arrivalTime;

}

double getServiceTime() {

return this.serviceTime;

}

:

:

It was found that during the simulation, depending on the order in which customers
were served, the service times were no longer in the order in which it was generated.
Re-write the above program fragments on the following page such that it retains the
order of service times generated while the customers are being served.
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ANSWER:
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3. [8 marks] You are given a Java program that implements a question-answer system
using two types of question formats:

• MCQ: multiple-choice questions comprising answers: A B C D E

• TFQ: true/false questions comprising answers: T F

The classes for MCQ and TFQ are given below:

class MCQ {

String question;

char answer;

public MCQ(String question) {

this.question = question;

}

void getAnswer() {

System.out.print(question + " ");

answer = (new Scanner(System.in)).next().charAt(0);

if (answer < 'A' || answer > 'E') {

throw new InvalidMCQException("Invalid MCQ answer");

}

}

}

class TFQ {

String question;

char answer;

public TFQ(String question) {

this.question = question;

}

void getAnswer() {

System.out.print(question + " ");

answer = (new Scanner(System.in)).next().charAt(0);

if (answer != 'T' && answer != 'F') {

throw new InvalidTFQException("Invalid TFQ answer");

}

}

}

In particular, an invalid answer to any of the questions will cause an exception (either
InvalidMCQException or InvalidTFQException) to be thrown. These exceptions are
sub-classes of the IllegalArgumentException class. An example is given below.

class InvalidMCQException extends IllegalArgumentException {

public InvalidMCQException(String mesg) {

super(mesg);

}

}
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The client class Main is provided to illustrate how the question-answer system works.

class Main {

public static void main(String[] args) {

try {

MCQ mcq = new MCQ("What is the answer to this MCQ?");

TFQ tfq = new TFQ("What is the answer to this TFQ?");

mcq.getAnswer();

tfq.getAnswer();

} catch (InvalidMCQException ex) {

System.err.println(ex);

} catch (InvalidTFQException ex) {

System.err.println(ex);

}

}

}

A sample run for the above is given below. User input is underlined. Notice that the
program terminates once an invalid answer is given.

What is the answer to this MCQ? Q

InvalidMCQException: Invalid MCQ answer

To better manage the different types of questions, you are to design a more general

question-answer class QA that can take the place of both MCQ and TFQ types of
questions (and possibly more in future, each with their own type of exceptions).

You will need to show the following:

• The entire QA class;

• The changes needed for the existing exception classes;

• Any other new classes that are included;

• Modifications to the Main driver class above for the new design. Note that the
sample output should still remain the same.

ANSWER:
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4. [12 marks] You own a dating agency where your clients gets to indicate which other
clients they want to date with the following conditions:

• There are two types of clients Man and Woman;

• A Man can date another Woman, or vice-versa;

• A Man can also date another Man, and so does the women;

• A Man (or Woman) can only date one other Woman (or Man);

• For simplicity, all man and woman woman have unique names.

Here is an example of a possible setup of two relationships involving three men(M)
and one women(W):

• Mickey(M) dates Minnie(W)

• Donald(M) dates Goofy(M)

Now suppose, there is a new relationship given by:

• Daisy(W) dates Donald(M)

This would cause Donald to “breakup” with Goofy, so that Daisy can proceed to
date Donald. Hence, there are still two dating relationships, but three men (including
Goofy) and two women as tracked by the system.

A sample output for the above setup is given below:

Number of relationships: 2

Number of men: 3

Number of women: 2

Mickey(M) and Minnie(W) are in a relationship

Daisy(W) and Donald(M) are in a relationship

Goofy(M) is not in a relationship

Your task is to design an OOP Java program to support the dating application. Take
note of the following:

• This is a design question, so keep in mind the OOP concepts and design principles;

• There are only two import statements:

import java.util.List;

import java.util.ArrayList;

• You do not need to handle user input. Just write a test class to set up the above
three relationships in sequence, so that it gives the desired output as shown above.
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ANSWER:
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5. [8 marks] In the lecture, we have seen the SOLID principles as a set of guiding
principles for designing OO programs. How are these principles applied in the con-
text of streams and lambda expressions? In particular, you will need to describe the
applicability with respect to the following three principles:

(a) Single Responsibility Principle

(b) Liskov-Substitution Principle

(c) Open-closed Principle

Where appropriate, you should use sample program fragments to illustrate.

ANSWER:
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